Advertisement

Earth, Planets and Space

, Volume 58, Issue 4, pp 485–495 | Cite as

Global lithospheric magnetic field modelling by successive regional analysis

  • E. Thébault
Open Access
Article

Abstract

Present lithospheric field models, like the MF4 and CM4, are produced by least squares estimation using spherical harmonic basis functions with global support. Accounting for the different properties of magnetic data at low and high latitudes, a method that can take regional differences into account is proposed. Using four years of CHAMP satellite data, a detailed lithospheric magnetic field snapshot is obtained at 400 km altitude over the entire sphere by stitching together a dense coverage of regional models. The individual forward models computed on a quasi-regular grid over the Earth are then transformed to spherical harmonics by direct integration. Despite the stitching procedure, the long wavelength lithospheric features are correctly reproduced and small scale features are well resolved. Without regularization, the resulting model is stable to spherical harmonic degree 56. In addition to accounting for regionally varying noise levels, the proposed technique is also well suited to deal with incomplete data coverage issues when combining satellite with near surface data. The method could therefore make an important contribution to one of the main goals of the Swarm mission: to close the spectral gap between satellite and near-surface magnetic surveys.

Key words

Regional modelling Revised Spherical Cap Harmonic Analysis lithospheric field geomagnetism 

References

  1. Cain, J. C., Z. Wang, C. Kluth, and D. R. Schmitz, Derivation of a geomagnetic model to n = 63, Geophys. J. Int., 97, 431–441, 1989.CrossRefGoogle Scholar
  2. Driscoll, J. R. and D. M. Healy, Computing fourier transforms and convolution on the 2-sphere, Adv. Appl. Maths., 15, 202–250, 1994.CrossRefGoogle Scholar
  3. Dufour, H. M., A proposal for a unique quasi-regular grid on a sphere, Manuscripta Geodatica, 16, 267–273, 1991.Google Scholar
  4. ESA, Swarm—the Earth’s magnetic field and environment explorers, Tech. Report, SP-1279(6), European Spatial Agency, http://www.esa.int/ esaLP/LPswarm.html, 2004.Google Scholar
  5. Fejér, L., Sur les singularités de la série de fourier des fonctions continues, Annales Scientifiques de l’E.N.S., 28, 63–104, 1911.Google Scholar
  6. Goodwin, A. M., Precambrian Geology: The Dynamic Evolution of the Continental Crust, Academic Press, San Diego, 1991.Google Scholar
  7. Haines, G. V., Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591, 1985.CrossRefGoogle Scholar
  8. Hemant, K., Modeling and interpretation of global lithospheric magnetic anomalies, PhD thesis, Freien Universität, Berlin, 2003.Google Scholar
  9. Langel, R. A. and W. J. Hinze, The Magnetic Field of the Earth’s Lithosphere, Cambridge University Press, 1998.CrossRefGoogle Scholar
  10. Lesur, V. and D. Gubbins, Evaluation of fast spherical transforms for geophysical applications, Geophys. J. Int., 139, 547–555, 1999.CrossRefGoogle Scholar
  11. Lowes, F. J., Mean-square values on sphere of spherical harmonic vector fields, J. Geophys. Res., 71, 2179, 1966.CrossRefGoogle Scholar
  12. Maus, S., H. Lühr, G. Balasis, M. Rother, and M. Mandea, Introducing POMME, the POtsdam Magnetic Model of the Earth, http://www.gfzpotsdam.de/pb2/pb23/index.html, 2004.Google Scholar
  13. Maus, S., M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kuvshinov, and N. Olsen, Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164(2), 319–330, 2006.CrossRefGoogle Scholar
  14. Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, volume 45 of International Geophysics Series, Academic Press, New York, second edition, 1989.Google Scholar
  15. Olsen, N., A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Èrsted data, Geophys. J. Int., 149, 454–462, 2002.CrossRefGoogle Scholar
  16. Press, W. H., S. A. Teulolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in C, Cambridge Unviversity Press, New York, second edition, 1992.Google Scholar
  17. Sabaka, T. J., N. Olsen, and M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Èrsted and CHAMP data, Geophys. J. Int., 159, 521–547, 2004.CrossRefGoogle Scholar
  18. Saff, E. B. and A. B. J. Kuijlaars, Distributing many points on a sphere, The Mathematical Intelligencer, 19(1), 5–11, 1997.CrossRefGoogle Scholar
  19. Thébault, E., Modélisation régionale du champ magnétique terrestre, PhD thesis, Université Louis Pasteur, Strasbourg, 2003.Google Scholar
  20. Thébault, E., J. J. Schott, and M. Mandea, Revised spherical cap harmonic analysis (R-SCHA): validation and properties, J. Geophys. Res., 111, B01102, 2006.Google Scholar
  21. Tyler, R., S. Maus, and H. Lühr, Satellite observations of magnetic fields du to ocean tidal flow, Science, 299, 239–241, 2003.CrossRefGoogle Scholar
  22. Walker, J. S., Fourier Analysis, Oxford University Press, 1988.Google Scholar
  23. Wessel, P. and W. H. F. Smith, Free software help maps and display data, EOS Trans., 72, 441, 1991.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  1. 1.GeoForschungsZentrumPotsdamGermany

Personalised recommendations