Earth, Planets and Space

, Volume 58, Issue 4, pp 463–476 | Cite as

Curl-B technique applied to Swarm constellation for determining field-aligned currents

  • Patricia RitterEmail author
  • Hermann Lühr
Open Access


The constellation of the Swarm satellites provides for the first time the opportunity to determine field-aligned currents in the ionosphere uniquely. This is achieved by employing the curl-B relation of Ampere’s law directly to measurements of a satellite pair flying side-by-side. The new technique is applied to a set of consistent magnetic field and current data generated by a global magnetospheric model. Using a realistic Swarm constellation the current distribution is determined along the orbit from the synthetic magnetic field data. The resulting currents are tested against the input currents. The agreement between input model and recovered field-aligned currents is excellent and much improved compared to the single-satellite estimates. Due to the spatial separation of the sampling points, only the distribution of large-scale field-aligned currents can be determined. These investigations demonstrate one important aspect of the broad capabilities provided by the upcoming space mission.

Key words

External magnetic field high latitude currents field-aligned currents current determination 


  1. Anderson, B. J., K. Takahashi, and B. A. Toth, Sensing global Birkeland currents with Iridium engineering magnetometer data, Geophys. Res. Lett., 27, 4045, 2000.CrossRefGoogle Scholar
  2. Friis-Christensen, E., H. Lühr, and G. Hulot, Swarm: A constellation to study the Earth’s magnetic field, Earth Planets Space, 58, this issue, 351–358, 2006.CrossRefGoogle Scholar
  3. Fung, S. F. and R. A. Hoffman, Finite geometry effects of field-aligned currents, J. Geophys. Res., 97, 8569–8579, 1992.CrossRefGoogle Scholar
  4. Holme, R., N. Olsen, M. Rother, and H. Lühr, CO2-a CHAMP magnetic field model, in “First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies”, edited by C. Reigber, H. Lühr, and P. Schwintzer, pp. 220–225, Springer, Berlin, 2003.CrossRefGoogle Scholar
  5. Iijima, T. and T. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by TRIAD, J. Geophys. Res., 81, 2165–2174, 1976.CrossRefGoogle Scholar
  6. Lühr, H., J. J. Warnecke, and M. Rother, An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements: a diagnostic tool applied to Freja satellite data, IEEE Trans. Geosci. Remote Sens., 34, 1369–1376, 1996.CrossRefGoogle Scholar
  7. McCarthy, D., IERS Conventions (1996), IERS Technical Note 21, Observatoire de Paris, July, 1996.Google Scholar
  8. Moretto, T., S. Vennerstrøm, N. Olsen, L. Rastätter, and J. Raeder, Using global magnetospheric models for simulation and interpretation of Swarm external field measurements, Earth Planets Space, 58, this issue, 439–449, 2006.CrossRefGoogle Scholar
  9. Olsen, N., Ionospheric F region currents at middle and low latitudes estimated from MAGSAT data, J. Geophys. Res., 102(A3), 4563–4576, 1997.CrossRefGoogle Scholar
  10. Olsen, N., et al., Swarm End-to-End Mission Performance Simulator Study, February 2004, ESA Contract No. 17263/03/NL/CB, DSRI Report 1/2004, 2004.Google Scholar
  11. Reigber, C., H. Lühr, and P. Schwintzer, CHAMP mission status, Adv. Space Res., 30(2), 129–134, 2002.CrossRefGoogle Scholar
  12. Sonnerup, B. U. O. and L. J. Cahill, Magnetopause structure and attitude from explorer 12 observations, J. Geophys. Res., 72, 171–183, 1967.CrossRefGoogle Scholar
  13. Stauning, P., Field-aligned ionospheric current systems observed from the Magsat and Ørsted satellites during northward IMF, Geophys. Res. Lett., 29, 10.1029/2001GL013,961, 2002.Google Scholar
  14. Stauning, P., F. Primdahl, J. Watermann, and O. Rasmussen, IMF By-related cusp currents observed from the Ørsted satellite and from ground, Geophys. Res. Lett., 28, 99–102, 2001.CrossRefGoogle Scholar
  15. Stauning, P., F Christiansen, and J. Watermann, On the modelling of field-aligned currents from magnetic observations by polar orbiting satellites, in Earth Observation with CHAMP, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, p. 371, Springer, Berlin, 2005.CrossRefGoogle Scholar
  16. Vennerstrøm, S., T. Moretto, N. Olsen, E. Friis-Christensen, A. Stampe, and J. Watermann, Field-aligned currents in the dayside cusp and polar cap region during northward IMF, J. Geophys. Res., 107(A8), 10.1029/2001JA009,162, 2002.Google Scholar
  17. Vennerstrøm, S., E. Friis-Christensen, H. Lühr, T. Moretto, N. Olsen, C. Manoj, P. Ritter, L. Rastätter, A. Kuvshinov, and S. Maus, The impact of combined magnetc and electric field analysis and of ocean circulation effects on Swarm Mission performance, ESA Contract No. 3-10901/03/NL/CB, DSRI Report 2/2004, 2004.Google Scholar
  18. Vennerstrom, S., T. Moretto, L. Rastätter, and J. Raeder, Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field, Earth Planets Space, 57, this issue, 451–461, 2006.CrossRefGoogle Scholar
  19. Waters, C. L., B. J. Anderson, and K. Liou, Estimation of global field-aligned currents using the Iridium System magnetometer data, Geophys. Res. Lett, 28(11), 2165–2168, 2001.CrossRefGoogle Scholar
  20. Yamashita, S. and T. Iyemori, Seasonal and local-time dependences of the inter-hemispheric field-aligned currents deduced from the Ørsted satellite and the ground geomagnetic observations, in OIST-4 Proceedings, edited by P. Stauning, H. Lühr, P. Ultré-Guérard, J. LaBreque, M. Purucker, F. Primdahl, J. Joergenson, F. Christiansen, P. Hoeg, and K. Lauritsen, p. 159, DMI, Copenhagen, 2003.Google Scholar
  21. Zmuda, A. J. and J. C. Armstrong, The diurnal flow pattern of field-aligned currents, J. Geophys. Res., 79, 4611–4619, 1974.CrossRefGoogle Scholar
  22. Zmuda, A. J., J. H. Martin, and F. T. Heuring, Transverse magnetic disturbances at 1100 kilometers in the auroral region, J. Geophys. Res., 71, 5033–5045, 1966.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  1. 1.GFZ PotsdamPotsdamGermany

Personalised recommendations