Advertisement

Earth, Planets and Space

, Volume 57, Issue 5, pp 441–446 | Cite as

Resistivity imaging across the source region of the 2004 Mid-Niigata Prefecture earthquake (M6.8), central Japan

  • Makoto UyeshimaEmail author
  • Yasuo Ogawa
  • Yoshimori Honkura
  • Shigeru Koyama
  • Naoto Ujihara
  • Toru Mogi
  • Yusuke Yamaya
  • Makoto Harada
  • Satoru Yamaguchi
  • Ichiro Shiozaki
  • Tatsuya Noguchi
  • Yoshihiro Kuwaba
  • Yoshikazu Tanaka
  • Yuji Mochido
  • Noriko Manabe
  • Masanori Nishihara
  • Mamoru Saka
  • Masato Serizawa
Open Access
Letter

Abstract

Across the source region of the 2004 Mid-Niigata Prefecture earthquake, wideband magnetotelluric (MT) survey was performed just after the onset of the mainshock. Owing to the temporal stop of the DC powered railways around the area together with intense geomagnetic activity, we obtain MT records with excellent quality for both short and long period data, as long as 10,000 s. Two dimensional regional strike is evaluated with the aid of the Groom-Bailey tensor decomposition together with induction vector analysis. As a result, N15°W is determined for the strike. This strike is oblique to the local geological trend and also to the strike of the main shock source fault together with aftershock distribution of N35°E. Two dimensional resistivity structure is determined with the aid of an ABIC inversion code, where static shift is considered and estimated. Characteristics of the structure are as follows. (1) About 10 km thick sedimentary layer exists on the top. (2) A conductive body exists in the lower crust beneath the source region. The mainshock occurred at the boundary of the conductive sedimentary layer and a resistive basement beneath it and aftershocks occurred in the sedimentary layer. From geological studies, it is reported that the sedimentary layer was formed in the extensional rift-structure from Miocene to Pleistocene and has been thickened by compressional tectonic regime in the late Quaternary. Interstitial fluids or clay minerals, which reduce the sedimentary layer resistivity, control the reactivation of the normal fault as the mainshock thrust fault and aftershock activity. The second conductive body probably indicates existence of fluids in the depths as well. Such a conductive layer in the lower crust was also revealed by previous MT experiments along the Niigata-Kobe Tectonic Zone and probably plays a main role in concentration of strain rate along the zone.

Key words

Resistivity structure magnetotelluric sounding 2004 Mid-Niigata Prefecture earthquake water clay minerals Niigata-Kobe Tectonic Zone 

References

  1. Gamble, T. D., J. Clarke, and W. M. Goubau, Magnetotellurics with a remote magnetic reference, Geophysics, 44, 53–68, 1979.CrossRefGoogle Scholar
  2. Goldstein, M. A. and D. W. Strangway, Audio-frequency magnetotellurics with a grounded electric dipole source, Geophysics, 40, 669–683, 1975.CrossRefGoogle Scholar
  3. Goto, T., Y. Wada, N. Oshiman, and N. Sumitomo, Resistivity structure of a seismic gap along the Atotsugawa fault, Phys. Earth Planet. Inter., 148, 55–72, 2005.CrossRefGoogle Scholar
  4. Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortions, J. Geophys. Res., 94, 1913–1925, 1989.CrossRefGoogle Scholar
  5. Heki, K. and S. Miyazaki, Plate convergence and long-term crustal deformation in Central Japan, Geophys. Res. Lett., 28, 2313–2316, 2001.CrossRefGoogle Scholar
  6. Hirata, N., H. Sato, and Research Group for the Urgent Aftershock of the Earthquake Research Institute, University of Tokyo, The 2004 Mid- Niigata Prefecture Earthquake—Source faults estimated by the subsurface structure and aftershocks, Kagaku, 75, 149–151, 2005a (in Japanese).Google Scholar
  7. Hirata, N., H. Sato, S. Sakai, A. Kato, and E. Kurashimo, Fault system of the 2004 Mid Niigata Prefecture Earthquake and its aftershocks, Landslides, 2, doi:10.1007/s10346-005-0050-8, 2005b.Google Scholar
  8. Hyodo, M. and K. Hirahara, A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan, Earth Planets Space, 55, 667–675, 2003.CrossRefGoogle Scholar
  9. Iio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands, Earth Planet. Sci. Lett., 203, 245–253, 2002.CrossRefGoogle Scholar
  10. Japan National Oil Corp., Research report on the pilot drilling at “Higashi- Kubiki” for prospecting petroleum and natural gas in Japan, 1991 (in Japanese).Google Scholar
  11. Kariya, K. A. and T. J. Shankland, Electrical conductivity of dry lower crustal rocks, Geophysics, 48, 52–61, 1983.CrossRefGoogle Scholar
  12. Kasaya, T., N. Oshiman, N. Sumitomo, M. Uyeshima, Y. Iio, and D. Uehara, Resistivity structure around the hypocentral area of the 1984 Western Nagano Prefecture earthquake in central Japan, Earth Planets Space, 54, 107–118, 2002.CrossRefGoogle Scholar
  13. Kato, A., E. Kurashimo, N. Hirata, S. Sakai, T. Iwasaki, and T. Kanazawa, Imaging the source region of the 2004 mid-Niigata prefecture earthquake and the evolution of a seismogenic thrust-related fold, Geophys. Res. Lett., doi:10.1029/2005GL022366, 2005.Google Scholar
  14. Komazawa, M., High-resolution Bouguer gravity anomaly map around the source region of the 2004 mid-Niigata prefecture earthquake on the web:http://unit.aist.go.jp/igg/rg/geophysmap-rg/grav/niigatagravfig.html, Institute of Geology and Geoinformation, AIST, 2004.Google Scholar
  15. Matsushima, M., Y. Honkura, N. Oshiman, S. Baris, M. K. Tuncer, S. B. Tank, C. Celik, F. Takahashi, M. Nakanishi, R. Yoshimura, R. Pektas, T. Komut, E. Tolak, A. Ito, Y. Lio, and A. M. Isikara, Seismoelectromagnetic effect associated with the Izmit earthquake and its aftershocks, Bull. Seis. Soc. Am., 92, 350–360, 2002.CrossRefGoogle Scholar
  16. Mitsuhata, Y., Y. Ogawa Y., M. Mishina, T. Kono, T. Yokokura, and T. Uchida, Electromagnetic heterogeneity of the seismogenic region of 1962 M6.5 Northern Miyagi Earthquake, northeastern Japan, Geophys. Res. Lett., 28, 4371–4374, 2001.CrossRefGoogle Scholar
  17. Ogawa, Y. and Y. Honkura, Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka Tectonic Line, Central Japan, Earth Planets Space, 56, 1285–1291, 2004.CrossRefGoogle Scholar
  18. Ogawa, Y. and T. Uchida, A two-dimensional magnetotelluric inversion assuming Gaussian static shift, Geophys. J. Int., 126, 69–76, 1996.CrossRefGoogle Scholar
  19. Ogawa, Y., M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nisitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima, Magnetotelluric imaging of fluids in intraplate earthquakes zones, NE Japan back arc, Geophys. Res. Lett., 28, 3741–3744, 2001.CrossRefGoogle Scholar
  20. Ogawa, Y., S. Takakura, and Y. Honkura, Resistivity structure across Itoigawa-Shizuoka tectonic line and its implications for concentrated deformation, Earth Planets Space, 54, 1115–1120, 2002.CrossRefGoogle Scholar
  21. Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS array and presentday crustal deformation of Japan, Pure Appl. Geophys., 157, 2303–2322, 2000.Google Scholar
  22. Sakai. S., N. Hirata, A. Kato, E. Kurashimo, T. Iwasaki, and T. Kanazawa, Multi-fault system of the 2004 Mid-Niigata Prefecture Earthquake and its aftershocks, Earth Planet Space, 57, this issue, 417–422, 2005.CrossRefGoogle Scholar
  23. Sato, H., The relationship between late Cenozoic tectonic events and stress field and basin development in northeastern Japan, J. Geophys. Res., 99, 22261–22274, 1994.CrossRefGoogle Scholar
  24. Sibson, R. H., Rupture nucleation on unfavorably oriented faults, Bull. Seis. Soc. Am., 80, 1580–1604, 1990.Google Scholar
  25. Siripunvaraporn, W., G. Egbert, Y. Lenbury, and M. Uyeshima, Threedimensional magnetotelluric inversion: data-space method, Phys. Earth Planet. Int., 150, 3–14, 2005a.CrossRefGoogle Scholar
  26. Siripunvaraporn, W., G. Egbert, and M. Uyeshima, Interpretation of 2-D magnetotelluric data with 3-D inversion, Geophys. J. Int., 160, 804–814, 2005b.CrossRefGoogle Scholar
  27. Takakura, S., Resistivity of Neogene rocks in the Niigata and the Akita oil fields, Japan, BUTSURI-TANSA, 48, 161–175, 1995 (in Japanese with English abstract).Google Scholar
  28. Takakura, S., K. Nakagami, Y. Mitsuhata, and R. Murayama, Petroleum geological interpretation of resistivity structure based on magnetotelluric and deep well data in the Higashi-Kubiki area, Niigata, Japan, J. Jpn. Assoc. Petrol. Tech., 62, 59–69, 1997 (in Japanese with English abstract).CrossRefGoogle Scholar
  29. Yanagisawa, Y., I. Kobayashi, K. Takeuchi, M. Tateishi, K. Chihara, and H. Kato Geological Sheet Map 1:50,000 “Ojiya”, Geological Survey of Japan, 1986.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2005

Authors and Affiliations

  • Makoto Uyeshima
    • 1
    Email author
  • Yasuo Ogawa
    • 2
  • Yoshimori Honkura
    • 3
  • Shigeru Koyama
    • 1
  • Naoto Ujihara
    • 3
  • Toru Mogi
    • 4
  • Yusuke Yamaya
    • 4
  • Makoto Harada
    • 5
  • Satoru Yamaguchi
    • 6
  • Ichiro Shiozaki
    • 7
  • Tatsuya Noguchi
    • 7
  • Yoshihiro Kuwaba
    • 7
  • Yoshikazu Tanaka
    • 7
  • Yuji Mochido
    • 7
  • Noriko Manabe
    • 7
  • Masanori Nishihara
    • 7
  • Mamoru Saka
    • 1
  • Masato Serizawa
    • 1
  1. 1.Earthquake Research InstituteUniversity of TokyoJapan
  2. 2.Volcanic Fluid Research CenterTokyo Institute of TechnologyJapan
  3. 3.Department of Earth and Planetary SciencesTokyo Institute of TechnologyJapan
  4. 4.Graduate School of ScienceHokkaido UniversityJapan
  5. 5.Earthquake Research CenterTokai UniversityJapan
  6. 6.Department of Earth and Planetary SciencesKobe UniversityJapan
  7. 7.Department of Civil EngineeringTottori UniversityJapan

Personalised recommendations