Earth, Planets and Space

, Volume 57, Issue 5, pp 393–398 | Cite as

The terdiurnal tide in the mesosphere and lower thermosphere over Wuhan (30°N, 114°E)

  • Guangxin ZhaoEmail author
  • Libo Liu
  • Baiqi Ning
  • Weixing Wan
  • Jiangang Xiong
Open Access
Research News


Winds measured by an all-sky meteor radar have been used to investigate the terdiurnal tide in the mesosphere and lower thermosphere (MLT) region overWuhan (30.6°N, 114.4°E). We present a climatology of the terdiurnal tide at low-mid latitude site during the period of April 2002 to December 2004. The terdiurnal peak is distinct in the long-term power spectrum of the wind. The monthly and seasonal mean maximum amplitudes have values of 7 m/s and 5 m/s, respectively. The short-term amplitudes can occasionally reach up to 30 m/s, and at times the terdiurnal tide is as large as the diurnal and semidiurnal ones. It seems that the meridional component is more regular than the zonal one. An obvious annual variation is observed in the meridional phases with a phase leading in winter than that in summer. The annual variation for the terdiurnal tidal amplitude is not obvious, and is variable from year to year in our observations. This seasonal trend is slightly different from earlier studies at other locations.

Key words

Meteor radar terdiurnal tide mesospheric dynamics nonlinear interaction 


  1. Akmaev, R. A., Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: A model study, Geophys. Res. Lett., 28, 3817–3820, 2001.CrossRefGoogle Scholar
  2. Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM, Geophys. Res. Lett., 22, 2641–2644, 1CrossRefGoogle Scholar
  3. Cevolani, G., Tidal activity in the meteor zone over Budrio, Italy, Handbook MAP, 13, 121–137, 1987.Google Scholar
  4. Forbes, J. M., S. E. Palo, and X. Zhang, Lamb waves in the lower thermosphere: Observational evidence and global consequences, J. Geophys. Res., 104, 17,107–17,115, 1999.CrossRefGoogle Scholar
  5. Glass, M. and J. L. Fellous, The eight-hourly (terdiurnal) component of atmospheric tides, Space Research, 15, 191–197, 1975.Google Scholar
  6. Hagan, M. E., D. M. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813–6828, 1999.CrossRefGoogle Scholar
  7. Hernandez, G., R. W. Smith, and G. J. Fraser, Antarctic high-latitude mesospheric dynamics, Adv. Space Res., 16(5), 71–80, 1995.CrossRefGoogle Scholar
  8. Hocking, W. K., B. Fuller, and B. Vandepeer, Real-time determination of meteor related parameters utilizing modern digital technology, J. Atmos. Solar-Terr. Phys., 63, 155–169, 2001.CrossRefGoogle Scholar
  9. Holdsworth, D. A., I. M. Reid, and M. A. Cervera, Buckland Park all-sky interferometric meteor radar, Radio Sci., 39, RS5009, doi:10.1029/2003RS003014, 2004.Google Scholar
  10. Lomb, N. R., Least-squares frequency analysis of unequally spaced data, Astrophysics and Space Science, 39, 447–462, 1976.CrossRefGoogle Scholar
  11. Manson, A. H. and C. E. Meek, Dynamics of the middle atmosphere at Saskatoon (52°N, 107°W): a spectral study during 1981, 1982. J. Atmos. Terr. Phys., 48, 1039–1055, 1986.CrossRefGoogle Scholar
  12. Manson, A. H., C. E. Meek, M. Hagan, C. Hall, W. Hocking, J. Mac- Dougall, S. Franke, D. Riggin, D. Fritts, R. Vincent, and M. Burrage,: Seasonal variations of the semi-diurnal and diurnal tides in the MLT: Multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model, J. Atmos. Solar-Terr. Phys., 61, 809–828, 1999.CrossRefGoogle Scholar
  13. Miyahara, S. and J. M. Forbes, Interactions between gravity waves and the diurnal tide in the mesosphere and lower thermosphere, J. Meteorol. Soc. Jpn., 69, 523–531, 1991.Google Scholar
  14. Namboothiri, S. P., P. Kishore, Y. Murayama, and K. Igarashi, MF radar observations of terdiurnal tide in the mesosphere and lower thermosphere at Wakkanai (45.4°N, 141.7°E), Japan, J. Atmos. Solar-Terr. Phys., 66, 241–250, 2004.CrossRefGoogle Scholar
  15. Portnyagin, Y. I., J. M. Forbes, E. G. Merzlyakov, N. A. Makarov, and S. E. Palo, Intradiurnal wind observations observed in the lower thermosphere over the South Pole, Ann. Geophys., 18, 547–554, 2000.CrossRefGoogle Scholar
  16. Reddi, R. C., K. Rajeev, and G. Ramkumar, Tidal winds in the meteor region over Trivandrum, J. Atmos. Solar-Terr. Phys., 55, 1219–1231, 1CrossRefGoogle Scholar
  17. Smith, A. K., Structure of the Terdiurnal Tide at 95 km, Geophys. Res. Lett., 27, 177–180, 2000.CrossRefGoogle Scholar
  18. Smith, A. K. and D. A. Ortland, Modeling and analysis of the struture and generation of the terdiurnal tide, J. Atmos. Sci., 58, 3116–3134, 2001.CrossRefGoogle Scholar
  19. Teitelbaum, H., F. Vial, A. H. Manson, R. Giraldez, and M. Massebeuf, Nonlinear interaction between the diurnal and semidiurnal tides: Terdiurnal and diurnal secondary waves, J. Atmos. Terr. Phys., 51, 627–634, 1CrossRefGoogle Scholar
  20. Thayaparan, T., The terdiurnal tide in the mesosphere and lower thermosphere over London, Canada (43°N, 81°W), J. Geophys. Res., 102, 21,695–21,708, 1997.CrossRefGoogle Scholar
  21. Thayaparan, T., W. K. Hocking, and J. MacDougall, Observational evidence of gravity wave-tidal interactions using the UWO 2 MHz radar, Geophys. Res. Lett., 22, 381–384, 1995.CrossRefGoogle Scholar
  22. Younger, P. T., D. Pancheva, H. R. Middleton, and N. J. Mitchell, The 8- hour tide in the Arctic mesosphere and lower thermosphere, J. Geophys. Res., 107, 1420, doi:10.1029/2001JA005086, 2002.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2005

Authors and Affiliations

  • Guangxin Zhao
    • 1
    • 2
    • 3
    Email author
  • Libo Liu
    • 1
  • Baiqi Ning
    • 1
  • Weixing Wan
    • 1
  • Jiangang Xiong
    • 1
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  3. 3.Graduate School of the Chinese Academy of SciencesChina

Personalised recommendations