Advertisement

Earth, Planets and Space

, Volume 57, Issue 3, pp 215–230 | Cite as

Distinguished seismological and electromagnetic features of the impending global failure: Did the 7/9/1999 M5.9 Athens earthquake come with a warning?

  • Panayiotis KapirisEmail author
  • Konstantinos Nomicos
  • George Antonopoulos
  • John Polygiannakis
  • Konstantinos Karamanos
  • John Kopanas
  • Athanassios Zissos
  • Athanassios Peratzakis
  • Konstantinos Eftaxias
Open Access
Letter

Abstract

Clear VLF electromagnetic (EM) anomalies were detected prior to the Athens earthquake (EQ). We attempt to establish the hypothesis that these emissions were launched from the pre-focal area during micro-fracturing process. The spectral analysis in terms of fractal dynamics reveals that distinquished alterations in the associated scaling parameters emerge as the EQ is approached. These alterations suggests that the evolution of the Earth’s crust towards the “critical point” takes place not only in the seismological sense but also in the pre-fracture EM sense. VAN-signals and space-time TIR-signals were also detected prior to the Athens EQ. These anomalies, as well as the fault modeling of the Athens EQ obtained by interferometric combinations of ERS2 SAR images bring further support for the confidence in the reliability of our conclusions.

Key words

Earthquake prediction wavelet analysis intermittent criticality electromagnetic emissions Athens earthquake fracture scaling laws fault nucleation 

References

  1. Al-Kindy, F. and I. Main, Testing self-organized criticality in the crust using entropy: A regionalized study of the CMT global earthquake catalog, J. Geophys. Res., 108, 5–1–5–9, 2003.Google Scholar
  2. Alexeev, D. and P. Egorov, Persistent cracks accumulation under loading of rocks and concentration criterion of failure, Reports of RAS 333, 6, 769–770, 1993 (in Russian).Google Scholar
  3. Alexeev, D., P. Egorov, and V. Ivanov, Hurst statistics of time dependence of electromagnetic emission under rocks loading, Physical-Technical problems of exploitation of treasures of the soil, 5, 27–30, 1993 (in Russian).Google Scholar
  4. Anifrani, J.-C., C. Le Floc’h, D. Sornette, and B. Souillard, Universal log-periodic correction to renormalization group scaling for rupture stress prediction from acoustic emissions, J. Phys. I France, 5, 631–638, 1995.CrossRefGoogle Scholar
  5. Bowman, D., G. Ouillon, C. Sammis, A. Sornette, and D. Sornette, An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24,359–24,372, 1998.CrossRefGoogle Scholar
  6. Brodsky, E., V. Karakostas, and H. Kanamori, A new observation of dynamically triggered regional seismicity: Eartquakes in Greece following the August: 1999 Izmit, Turkey earthquake, Geophys. Res. Lett., 27, 2741–2744, 2000.CrossRefGoogle Scholar
  7. Chelidze, T., Percolation theory as a tool for imitation of fracture process in rocks, Pure Appl. Geophys., 124, 731–748, 1986.CrossRefGoogle Scholar
  8. Dahmen, K. and J. Sethna, Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach, Phys. Rev. B, 53, 14,872–14,905, 1996.CrossRefGoogle Scholar
  9. Diodati, P., F. Marchesoni, and S. Piazza, Acoustic emission from volcanic rocks: an example of self-organized criticality, Phys. Rev. Lett., 67, 2239–2243, 1991.CrossRefGoogle Scholar
  10. Dodze, D., G. Beroza, and W. Ellsworth, Detailed observations of California foreshock sequences: implications for the earthquake initiation process, J. Geophys. Res., 101, 22,371–22,392, 1996.CrossRefGoogle Scholar
  11. Eftaxias, K., J. Kopanas, N. Bogris, P. Kapiris, G. Antonopoulos, and P. Varotsos, Detection of electromagnetic earthquake precursory signals in Greece, Proc. Japan Acad., 76(B), 45–50, 2000.CrossRefGoogle Scholar
  12. Eftaxias, K., P. Kapiris, J. Polygiannakis, N. Bogris, J. Kopanas, G. Antonopoulos, A. Peratzakis, and V. Hadjicontis, Signatures of pending earthquake from electromagnetic anomalies, Geophys. Res. Lett., 28, 3321–3324, 2001a.CrossRefGoogle Scholar
  13. Eftaxias, K., P. Kapiris, Y. Polygiannakis, V. Hadjicontis, Z. Chelidze, D. Zilpimiani, and T. Chelidze, Seismogenic radio-emission as a signature of the earthquake preparation process, Journal of the Georgian Geophysical Society, 6, 3–16, 2001b.Google Scholar
  14. Eftaxias, K., P. Kapiris, E. Dologlou, J. Kopanas, N. Bogris, G. Antonopoulos, A. Peratzakis, and V. Hadjicontis, EM anomalies before the Kozani earthquake: A study of their behavior through laboratory experiments, Geophys. Res. Lett., 29, 69/1–69/4, 2002.CrossRefGoogle Scholar
  15. Eftaxias, K., P. Kapiris, J. Polygiannakis, A. Peratzakis, J. Kopanas, and G. Antonopoulos, Experience of short term earthquake precursors with VLF-VHF electromagnetic emissions, Natural Hazards and Earth System Sciences, 3, 217–228, 2003.CrossRefGoogle Scholar
  16. Eftaxias, K., P. Frangos, P. Kapiris, J. Polygiannakis, J. Kopanas, A. Peratzakis, P. Skountzos, and D. Jaggard, Review and a model of pre-seismic electromagnetic emissions in terms of fractal electrodynamics, Fractals, 12, 243–273, 2004.CrossRefGoogle Scholar
  17. Feder, J., Fractals, Plenum Press, New York, 1989.Google Scholar
  18. Filizzola, C, N. Pergola, C. Pietrapertosa, and V. Tramutoli, Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7th 1999 Athens earthquake, Physics and Chemistry of the Earth, 29, 517–527, 2004.CrossRefGoogle Scholar
  19. Garcimartin, A., A. Guarino, L. Bellon, and S. Ciliberto, Statistical properties of fracture precursors, Phys. Rev. Lett., 79, 3202–3205, 1997.CrossRefGoogle Scholar
  20. Gomberg, J., N. Beeler, M. Blanpied, and P. Bodin, Earthquake triggering by transient and static deformations, J. Geophys. Res., 103, 24,411–24,426, 1998.CrossRefGoogle Scholar
  21. Grasso, J.-R. and D. Sornette, Testing self-organized criticality by induced seismicity, J. Geophys. Res., 103, 1998.Google Scholar
  22. Hainzl, S., G. Zoller, and J. Kurths, Seismic quiescence as an indicator for large eartquakes in a system of self-orginized criticality, Geophys. Res. Let., 27, 597–600, 2000.CrossRefGoogle Scholar
  23. Heimpel, M., Critical behavior and the evolution of fault strength during earthquake cycles, Nature, 388, 865–868, 1997.CrossRefGoogle Scholar
  24. Huang, Y., H. Saleur, C. Sammis, and D. Sornette, Precursors, after-shocs, criticality and self-organized criticality, Europhys. Lett., 41, 43–48, 1998.CrossRefGoogle Scholar
  25. Jaume, S. and L. Sykes, Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure App. Geophys., 115, 279–305, 1999.CrossRefGoogle Scholar
  26. Kapiris, P., J. Polygiannakis, K. Nomicos, and K. Eftaxias, VHF-electromagnetic evidence of the underlying pre-seismic critical stage, Earth Planets Space, 54, 1237–1246, 2002.CrossRefGoogle Scholar
  27. Kapiris, P., G. Balasis, J. Kopanas, G. Antonopoulos, A. Peratzakis, and K. Eftaxias, Scaling similarities of multiple fracturing of solid materials, Nonlinear Processes in Geophysics, 11, 137–151, 2004a.CrossRefGoogle Scholar
  28. Kapiris, P., K. Eftaxias, and T. Chelidze, The electromagnetic signature of prefracture criticality in heterogeneous media, Phys. Rev. Lett., 92, 065,702/1–4, 2004b.CrossRefGoogle Scholar
  29. Kikuchi, M. and H. Kanamori, Inversion of complex body waves—III, Bull. Seism. Soc. Am., 81, 2335–2350, 1990.Google Scholar
  30. Kontoes, C, P. Elias, O. Sycioti, P. Briole, D. Remy, M. Sachpazi, G. Veis, and I. Kotsis, Displacement field and fault model for the September 7, Athens earthquake inferred from the ERS2 satellite radar interferometry, Geophys. Res. Lett., 27, 3989–3992, 2000.CrossRefGoogle Scholar
  31. Krysac, L. and J. Maynard, Evidence for the role of propagating stress waves during fracture, Phys. Rev. Let., 81, 4428–4431, 1998.CrossRefGoogle Scholar
  32. Kuntz, M. and P. Sethna, Noise in disorder systems: the power spectrum and dynamic exponents in avalanche models, Phys. Rev. B, 62, 11,699–11,708, 2000.CrossRefGoogle Scholar
  33. Lavrov, A., The Kaizer effect in rocks: Principle and stress estimation techniques, Int. J. Rock Mech. Mining Sciences, 40, 151–171, 2003.CrossRefGoogle Scholar
  34. Lei, X., O. Nishizawa, K. Kusunose, A. Cho, T. Satoh, and O. Nishizawa, Compressive failure of mudstone samples containing quartz veins using rapid AE monitoring: the role of asperities, Tectonophysics, 328, 329–340, 2000.CrossRefGoogle Scholar
  35. Lei, X., K. Masuda, O. Nishizawa, L. Jouniaux, L. Liu, W. Ma, T. Satoh, and K. Kusunose, Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock, Journal of Structural Geology, 26, 247–258, 2004.CrossRefGoogle Scholar
  36. Li, H., Z. Jia, Y Bai, M. Xia, and F. Ke, Damage localization, sensitivity of energy release and the catastrophe transition, Pure Appl. Geophys., 159, 1933–1950, 2002.CrossRefGoogle Scholar
  37. Lockner, D. and T. Madden, A multiple-crack model of brittle fracture. Time-dependent simulations,J. Geophys. Res., 96, 19,643–19,654, 1991.Google Scholar
  38. Main, I., Applicability of time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions, Geophys, J. Int., 139, F1–F6, 1999.CrossRefGoogle Scholar
  39. Mandelbrot, B., Fractals: Form, Chance, Dimension, Freeman, San Francisco, 1977.Google Scholar
  40. Maslov, S., M. Paczuski, and P. Bak, Avalanches and 1/f noise in evolution and growth models, Phys. Rev. Lett., 73, 2162, 1994.CrossRefGoogle Scholar
  41. Meredith, P., Fracture and failure of brittle polycrystals: an overview, in Deformation Processes in Minerals, Ceramics and Rocks, edited by D. Barder and P. Meredith, pp. 5–41, Unwin Hyman, London, 1990.CrossRefGoogle Scholar
  42. Meredith, P., I. Main, and C. Jones, Temporal variations in seismicity during quasi-static and dynamic rock failure, Tectonophysics, 175, 249–268, 1990.CrossRefGoogle Scholar
  43. Miramontes, O. and P. Rohani, Estimating Open image in new window scaling exponents from short time-series, Physica D, 166, 147–154, 2002.CrossRefGoogle Scholar
  44. Morgounov, V., Relaxation creep model of impending earthquake, Annali di Geofisica, 44(2), 369–381, 2001.Google Scholar
  45. Nagao, T., Y. Orihara, T. Yamaguchi, T. Takahashi, K. Hattori, Y Noda, and K. Sayanagi, Co-seismic geoelectric potential changes observed in Japan, Geophys. Res. Lett., 27, 1535–1538, 2000.CrossRefGoogle Scholar
  46. Newman, W. and D. Turcotte, A simple model for the earthquake cycle combining self-organized complexity with critical point behavior, Nonlinear Processes in Geophysics, 9, 453–461, 2002.CrossRefGoogle Scholar
  47. Papadopoulos, G., The Athens, Greece earthquake (Ms 5.9) of 7 September 1999: an event triggered by the Izmit, Turkey, 17 August 1999 earthquake?, Bull. Seism. Soc. Am., 92, 312–321, 2002.CrossRefGoogle Scholar
  48. Petri, A., G. Paparo, A. Vespignani, A. Alippi, and M. Constantini, Experimental evidence for critical dynamics in microfracturing processes, Phys. Rev. Let, 73, 3423–3426, 1994.CrossRefGoogle Scholar
  49. Ponomarev, A., A. Zavyalov, V. Smirnov, and D. Lockner, Physical modelling of the formation and evolution of seismically active fault zones, Tectonophysics, 277, 57–81, 1997.CrossRefGoogle Scholar
  50. Reasenberg, P., Foreshock occurrence rates before large earthquakes worldwide, Pure Appl. Geophys., 155, 355–379, 1999.CrossRefGoogle Scholar
  51. Reches, 6Z. and D. Lockner, Nucleation and growth of faults in brittle rocks, J. Geophys. Res., 99, 18,159–18,173, 1994.CrossRefGoogle Scholar
  52. Sahimi, M. and J. Goddard, Elastic percolation models for cohesive mechanical failure in heterogeneous systems, Phys. Rev. B., 33, 7848–7851, 1986.CrossRefGoogle Scholar
  53. Saleur, H., C. Sammis, and D. Sornette, Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity, J. Geophys. Res., 101, 17,661–17,667, 1996a.CrossRefGoogle Scholar
  54. Saleur, H., C. Sammis, and D. Sornette, Renormalization group theory of earthquakes, Nonlinear Processes in Geophysics, 3, 102–109, 1996b.CrossRefGoogle Scholar
  55. Sammis, C. and D. Sornette, Positive feedback, memory, and the predictability of earthquakes, PNAS, 99, 2501–2508, 2002.CrossRefGoogle Scholar
  56. Sammis, C, D. Sornette, and H. Saleur, Complexity and earthquake forecasting, in Reduction and Predictability of Natural Disasters, SFI studies in the Sciences of complexity, edited by J. Rundle, W. Klein, and D. Turcotte, vol. XXV, pp. 143–156, Addison-Wesley, Reading, Mass., 1996.Google Scholar
  57. Sethna, J., K. Dahmen, and C. Myers, Crackling noise, Nature, 410, 242–250, 2001.CrossRefGoogle Scholar
  58. Shaw, B., J. Carlson, and J. Langer, Patterns of seismic activity preceding large earthquakes, J. Geophys. Res., 97, 479–488, 1992.CrossRefGoogle Scholar
  59. Sornette, D., Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools, Second edition, Springer Series in Synergetics, Heidelberg, 2004.Google Scholar
  60. Sornette, D. and C. Sammis, Complex critical exponents from renormal-ization group theory of earthquakes: Implications for earthquake predictions, J. Phys. I., 5, 607–619, 1995.Google Scholar
  61. Stein, R., The role of stress transfer in earthquake occurrence, Nature, 402, 605–609, 1999.CrossRefGoogle Scholar
  62. Thurber, C., Creep events preceding small to moderate on the San Andreas fault, Nature, 380, 425–428, 1996.CrossRefGoogle Scholar
  63. Torrence, C. and P. Compo, A practical guide to wavelet analysis, Bull. Amer. Meteor. Soc., 79, 61–78, 1998.CrossRefGoogle Scholar
  64. Turcotte, D., Fractals and Chaos in Geology and Geophysics, Cambridge University Press, 1992.Google Scholar
  65. Tzanis, A. and K. Makropoulos, Did the 7/9/ 1999 M5.9 Athens earthquake come with a warning?, Natural Hazard, 27, 85–103, 2002.CrossRefGoogle Scholar
  66. Varotsos, P., K. Eftaxias, V. Hadjicontis, N. Bogris, E. Skordas, P. Kapiris, and M. Lazaridou, Three notes on the extent of the SES sensitive area around Lamia (LAM), Greece, Acta Geophys. Polonika, XLVII, 435–443, 1999.Google Scholar
  67. Wornell, G., Signal Processing with Fractals. A Wavelet-based Approach, Prentice Hall, 1996.Google Scholar
  68. Zapperi, S., P. Ray, H. Stanley, and A. Vespignani, First-order transition in the breakdown of disordered media, Phys. Rev. Lett., 78, 1408–1411, 1997.CrossRefGoogle Scholar
  69. Zoller, G. and S. Hainzl, A systematic spatiotemporal test of the critical point hypothesis for large earthquakes, Geophys. Res. Lett., 29, 53/1–53/4, 2002.CrossRefGoogle Scholar
  70. Zoller, G., S. Hainzl, and J. Kurths, Observations of growing correlation length as an indicator for critical point behavior prior to large earthquakes, J. Geophys. Res., 106, 2167–2175, 2001.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2005

Authors and Affiliations

  • Panayiotis Kapiris
    • 1
    Email author
  • Konstantinos Nomicos
    • 2
  • George Antonopoulos
    • 1
  • John Polygiannakis
    • 1
  • Konstantinos Karamanos
    • 3
  • John Kopanas
    • 1
  • Athanassios Zissos
    • 4
  • Athanassios Peratzakis
    • 1
  • Konstantinos Eftaxias
    • 1
  1. 1.Department of PhysicsUniversity of AthensGreece
  2. 2.Technological Educational Institute of AthensGreece
  3. 3.Centre for Nonlinear Phenomena and Complex SystemsUniversité Libre de BruxellesBelgium
  4. 4.Technological Educational Institute of PiraeusGreece

Personalised recommendations