Advertisement

Earth, Planets and Space

, Volume 54, Issue 6, pp 679–690 | Cite as

Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron

  • Chorng-Shern Horng
  • Meng-Yang Lee
  • Heiko Pälike
  • Kuo-Yen Wei
  • Wen-Tzong Liang
  • Yoshiyuki Iizuka
  • Masayuki Torii
Open Access
Article

Abstract

We present a magnetostratigraphic record from the western Philippine Sea that is tied to a marine δ18O record for the past 2.14 million years. The ages of geomagnetic reversals were astronomically calibrated by tuning the oxygen isotopic stratigraphy, yielding a chronology for the following subchrons: Matuyama/Brunhes boundary, 781 ± 3 ka (slightly above δ18O Stage 19.3); top of the Santa Rosa polarity interval, 920 ± 2 ka (Stage 23/24); base of the Santa Rosa polarity interval, 925 ± 1 ka (Stage 24); top of the Jaramillo subchron, 988 ± 3 ka (Stage 27); base of the Jaramillo subchron, 1072 ± 2 ka (Stage 31); top of the Cobb Mountain subchron, 1173 ± 4 ka (Stage 35/36); base of the Cobb Mountain subchron, 1185 ± 5 ka (Stage 36); top of the Olduvai subchron, 1778 ± 3 ka (Stage 63/64); base of the Olduvai subchron, 1945 ± 4 ka (Stage 71/72); top of the Réunion II subchron, 2118 ± 3 ka (Stage 80/81); and base of the Réunion II subchron, 2133 ± 5 ka (Stage 81). This astronomically calibrated chronology independently confirms the ages of major reversals in recently published astronomically calibrated polarity timescales for the Matuyama chron. It also provides the first astronomically calibrated dates for the lower and upper reversals associated with the Cobb Mountain and Santa Rosa polarity intervals, respectively.

Keywords

Magnetic Reversal Tephra Layer Oxygen Isotope Record Core MD972143 Target Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baksi, A. K. and K. A. Hoffman, On the age and morphology of the Reunion event, Geophys. Res. Lett., 27, 2997–3000, 2000.CrossRefGoogle Scholar
  2. Baksi, A. K., V. Hsu, M. O. McWilliams, and E. Farrar, Ar/Ar dating of the Brunhes-Matuyama geomagnetic field reversal, Science, 256, 356–357, 1992.CrossRefGoogle Scholar
  3. Baksi, A. K., K. A. Hoffman, and M. McWilliams, Testing the accuracy of the geomagnetic polarity time-scale (GPTS) at 2–5 Ma, utilizing Ar/ Ar incremental heating data on whole-rock basalts, Earth Planet. Sci. Lett., 118, 135–144, 1993.CrossRefGoogle Scholar
  4. Bassinot, F. C, L. D. Labeyrie, E. Vincent, X. Quidelleur, N. J. Shackleton, and Y. Lancelot, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 126, 91–108, 1994.CrossRefGoogle Scholar
  5. Berggren, W. A., F. J. Hilgen, C. G. Langereis, D. V. Kent, J. D. Obradovich, I. Raffi, M. E. Raymo, and N. J. Shackleton, Late Neogene chronology: New perspectives in high-resolution stratigraphy, Geol. Soc. Am. Bull, 107, 1272–1287, 1995.CrossRefGoogle Scholar
  6. Burns, C. A., Timing between a large impact and a geomagnetic reversal and the depth of NRM acquisition in deep-sea sediments, in Geomagnetism and Paleomagnetism, edited by F. J. Lowes et al, pp. 253–261, Kluwer Academic Publishers, Dordrecht, 1989.CrossRefGoogle Scholar
  7. Champion, D. E., M. A. Lanphere, and M. A. Kuntz, Evidence for a new geomagnetic reversal from lava flows in Idaho: Discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons, J. Geophys. Res., 93, 11667–11680, 1988.CrossRefGoogle Scholar
  8. Channell, J. E. T. and H. F. Kleiven, Geomagnetic palaeointensities and astrochronological ages for the Matuyama-Brunhes boundary and the boundaries of the Jaramillo subchron: Palaeomagnetic and oxygen isotope records from ODP Site 983, Phil. Trans. R. Soc. Lond., A358, 1027–1047, 2000.CrossRefGoogle Scholar
  9. Clement, B. M., D. V. Kent, and N. D. Opdyke, A synthesis of magnetostratigraphic results from Pliocene-Pleistocene sediments cored using the hydraulic piston corer, Paleoceanography11, 299–308, 1996.CrossRefGoogle Scholar
  10. Cui, Y. L., K. L. Verosub, and A. P. Roberts, The effect of maghemitization on large multi-domain magnetite, Geophys. Res. Lett, 21, 757–760, 1994.CrossRefGoogle Scholar
  11. deMenocal, P. B., W. F. Ruddiman, and D. V. Kent, Depth of post-depositional remanence acquisition in deep-sea sediments: A case study of the Brunhes-Matuyama reversal and oxygen isotopic Stage 19.1, Earth Planet. Sci. Lett, 99, 1–13, 1990.CrossRefGoogle Scholar
  12. Doell, R. R., G. B. Dalrymple, R. L. Smith, and R. A. Bailey, Paleomagnetism, potassium-argon ages, and geology of rhyolites and associated rocks of the Valles Caldera, New Mexico, Mem. Geol. Soc. Am., 116, 211–248, 1968.CrossRefGoogle Scholar
  13. Hilgen, F. J., Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale, Earth Planet. Sci. Lett, 104, 226–244, 1991.CrossRefGoogle Scholar
  14. Horng, C.S., A. P. Roberts, and W.-T. Liang, A 2.14-million-year astronomically-tuned record of relative geomagnetic paleointensity from the western Philippine Sea, J. Geophys. Res., 2002 (in press).Google Scholar
  15. Izett, G. A. and J. D. Obradovich, Ar/Ar age constraints for the Jaramillo normal subchron and the Matuyama-Brunhes geomagnetic boundary, J. Geophys. Res., 99, 2925–2934, 1994.CrossRefGoogle Scholar
  16. Kent, D. V., Post-depositional remanent magnetization in deep-sea sediment, Nature, 246, 32–33, 1973.CrossRefGoogle Scholar
  17. Kidane, T., J. Carlut, V. Courtillot, Y. Gallet, X. Quidelleur, P. Y. Gillot, and T. Haile, Paleomagnetic and geochronological identification of the Reunion subchron in Ethiopian Afar, J. Geophys. Res., 104, 10405–10419, 1999.CrossRefGoogle Scholar
  18. Langereis, C. G., M. J. Dekkers, G. J. de Lange, M. Paterne, and P. J. M. van Santvoort, Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes, Geophys. J. Int., 129, 75–94, 1997.CrossRefGoogle Scholar
  19. Laskar, J., F. Joutel, and F. Boudin, Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr, Astron. Astrophys., 270, 522–533, 1993.Google Scholar
  20. Lee, M.-Y. and K.-Y. Wei, Australasian microtektites in the South China Sea and the West Philippine Sea: Implications for age, size and location of the impact crater, Meteorit. Planet. Sci., 35, 1151–1156, 2000.CrossRefGoogle Scholar
  21. Lourens, L. J., A. Antonarakou, F. J. Hilgen, A. A. M. van Hoof, C. Vergnaud-Grazzini, and W. J. Zachariasse, Evaluation of the Plio-Pleistocene astronomical timescale, Paleoceanography, 11, 391–413, 1996.CrossRefGoogle Scholar
  22. Maenaka, K., Magnetostratigraphic study of the Osaka Group, with special reference to the existence of pre- and post-Jaramillo episodes in the late Matuyama polarity epoch, Mem. Hanazono Univ., 14, 1–65, 1983.Google Scholar
  23. Mankinen, E. A., J. M. Donnelly, and C. S. Gromme, Geomagnetic polarity event recorded at 1.1 m.y. B.P. on Cobb Mountain, Clear Lake volcanic field, California, Geology, 6, 653–656, 1978.CrossRefGoogle Scholar
  24. McDougall, I. and N. D. Watkins, Age and duration of the Reunion geomagnetic polarity event, Earth Planet. Sci. Lett., 19, 443–452, 1973.CrossRefGoogle Scholar
  25. McDougall, I., F. H. Brown, T. E. Cerling, and J. W. Hillhouse, A reappraisal of the geomagnetic polarity time scale to 4 Ma using data from the Turkana Basin, east Africa, Geophys. Res. Lett., 19, 2349–2352, 1992.CrossRefGoogle Scholar
  26. Moskowitz, B. M., M. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, 1998.CrossRefGoogle Scholar
  27. Nenova, P. I., “Fe23”: A computer program for calculating the number of Fe+ and Fe+ ions in minerals, Comput. Geosci., 23, 215–219, 1997.CrossRefGoogle Scholar
  28. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.CrossRefGoogle Scholar
  29. Paillard, D., L. Labeyrie, and P. Yiou, Macintosh program performs time-series analysis, EOS Trans. AGU, 77, 379, 1996.CrossRefGoogle Scholar
  30. Raffi, I., J. Backman, D. Rio, and N. J. Shackleton, Plio-Pleistocene nan-nofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677, Paleoceanography, 8, 387–408, 1993.CrossRefGoogle Scholar
  31. Raymo, M. E., W. F. Ruddiman, J. Backman, B. M. Clement, and D. G. Martinson, Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic deep water circulation, Paleoceanography, 4, 413–446, 1989.CrossRefGoogle Scholar
  32. Roger, S., C. Coulon, N. Thouveny, G. Feraud, A. van Velzen, S. Fauquette, J. J. Cocheme, M. Prevot, and K. L. Verosub, Ar/Ar dating of atephra layer in the Pliocene Seneze maar lacustrine sequence (French Massif Central): constraint on the age of the Reunion-Matuyama transition and implications on paleoenvironmental archives, Earth Planet. Sci. Lett., 183, 431–440, 2000.CrossRefGoogle Scholar
  33. Ruddiman, W. F., M. E. Raymo, D. G. Martinson, B. M. Clement, and J. Backman, Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean, Paleoceanography, 4, 353–412, 1989.CrossRefGoogle Scholar
  34. Shackleton, N. J., The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Science, 289, 1897–1902, 2000.CrossRefGoogle Scholar
  35. Shackleton, N. J. and N. G. Pisias, Atmospheric carbon dioxide, orbital forcing, and climate, in The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to present, edited by E. T. Sundquist and W. S. Broeker, AGU Geophys. Monogr., 32, pp. 412–417, 1985.Google Scholar
  36. Shackleton, N. J., A. Berger, and W. R. Peltier, An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, Trans. R. Soc. Edinburgh: Earth Sciences, 81, 251–261, 1990.CrossRefGoogle Scholar
  37. Shackleton, N. J., S. Crowhurst, T. Hagelberg, N. G. Pisias, and D. A. Schneider, A new Late Neogene time scale: Application to Leg 138 sites, Proc. ODP Sci. Results, 138, 73–101, 1995.Google Scholar
  38. Singer, B. S. and L. L. Brown, The Santa Rosa event: Ar/Ar and paleomagnetic results from the Valles rhyolite near Jaramillo Creek, Jemez Mountains, New Mexico, Earth Planet. Sci. Lett, 197, 51–64, 2002.CrossRefGoogle Scholar
  39. Singer, B. S. and M. S. Pringle, Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from Ar/Ar incremental heating analyses of lavas, Earth Planet. Sci. Lett, 139, 47–61, 1996.CrossRefGoogle Scholar
  40. Singer, B. S., K. A. Hoffman, A. Chauvin, R. S. Coe, and M. S. Pringle, Dating transitionally magnetized lavas of the late Matuyama chron: Toward a new Ar/Ar timescale of reversals and events, J. Geophys. Res., 104, 679–693, 1999.CrossRefGoogle Scholar
  41. Spell, T. L. and I. McDougall, Revisions to the Brunhes-Matuyama boundary and the Pleistocene geomagnetic polarity timescale, Geophys. Res. Lett, 19, 1181–1184, 1992.CrossRefGoogle Scholar
  42. Takatsugi, K. O. and M. Hyodo, A geomagnetic excursion during the late Matuyama chron, the Osaka Group, southwest Japan, Earth Planet. Sci. Lett, 136, 511–524, 1995.CrossRefGoogle Scholar
  43. Tauxe, L., T. Herbert, N. J. Shackleton, and Y. S. Kok, Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences, Earth Planet. Sci. Lett, 140, 133–146, 1996.CrossRefGoogle Scholar
  44. Tiedemann, R. and G. H. Haug, Astronomical calibration of cycle stratigraphy for site 882 in the Northwest Pacific, Proc. ODP Sci. Res., 145, 283–292, 1995.Google Scholar
  45. Tiedemann, R., M. Sarnthein, and N. J. Shackleton, Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659, Paleoceanography, 9, 619–638, 1994.CrossRefGoogle Scholar
  46. Turrin, B. D., J. M. Donnelly-Nolan, and B. C. Hearn, 40Ar/39Ar ages from the rhyolite of Alder Creek, California: Age of the Cobb Mountain normal-polarity subchron revisited, Geology, 22, 251–254, 1994.CrossRefGoogle Scholar
  47. Van Velzen, A. J. and J. D. A. Zijderveld, Effects of weathering on single-domain magnetite in Early Pliocene marine marls, Geophys. J. Int., 121, 267–278, 1995.CrossRefGoogle Scholar
  48. Wei, W., Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy, Paleoceanography, 8, 85–99, 1993.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2002

Authors and Affiliations

  • Chorng-Shern Horng
    • 1
  • Meng-Yang Lee
    • 1
  • Heiko Pälike
    • 2
  • Kuo-Yen Wei
    • 3
  • Wen-Tzong Liang
    • 1
  • Yoshiyuki Iizuka
    • 1
  • Masayuki Torii
    • 4
  1. 1.Institute of Earth SciencesAcademia SinicaNankang, TaipeiTaiwan, R.O.C.
  2. 2.Godwin Institute, Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.Department of GeosciencesNational Taiwan UniversityTaipei
  4. 4.Department of Biosphere-Geosphere System Science, Faculty of InformaticsOkayama University of ScienceOkayamaJapan

Personalised recommendations