Introduction

In the last two centuries, remarkable contributions have been made to both the theory and application of nonlinear equations. Suppose that we have to find a solution of the nonlinear equation

F(x)=0,
(1)

where F is defined on an open convex subset Ω of a Banach space X with values in a Banach space Y.

These equations are increasingly used to model problems in engineering applications, such as material science, electrical engineering, civil engineering, chemical engineering, mechanics and numerical optimization. There are several iterative methods [16] used to find a solution of nonlinear equations. One of those iterative methods is the famous Newton’s method

x n + 1 = x n F ( x n ) 1 F( x n )(n0)( x 0 Ω)
(2)

often used to solve the nonlinear operator equation under the reasonable hypotheses. However, Newton’s method is only the second-order convergence. Kantorovich presented the famous convergence result [7], and afterward, many Newton-Kantorovich-type convergence theorems have been attained [817]. Furthermore, many deformed methods [1822] have been presented to improve the convergence order. The famous Halley’s method, which has been widely discussed [2330], is the third-order convergence. The famous Halley’s method is defined as

x n + 1 = x n [ I + 1 2 L F ( x n ) ( I 1 2 L F ( x n ) ) 1 ] F ( x n ) 1 F( x n ),n=0,1,,

where

L F (x)= F ( x ) 1 F (x) F ( x ) 1 F(x),xΩ.

Now, we consider Halley’s method with a parameter λ in the form

x λ , n + 1 = x λ , n [ I + 1 2 L F ( x λ , n ) ( I λ L F ( x λ , n ) ) 1 ] F ( x λ , n ) 1 F( x λ , n ),n=0,1,.

One can see that Halley’s method and super-Halley’s method are the special cases for λ= 1 2 and λ=1. In this method, in every step, one needs to compute the second order derivatives of the function F. The computing cost will be the high. To avoid the computation of F ( x n ), and to maintain the high order convergence, many researchers have replaced the second order derivative with the first order divided differences. They presented the modified Halley’s methods with the parameters p, λ. Their modified Halley’s method is as follows [12]:

{ y n = x n F ( x n ) 1 F ( x n ) , H ( x n , y n ) = 1 p F ( x n ) 1 [ F ( x n + p ( y n x n ) ) F ( x n ) ] , λ [ 0 , 1 ] , p ( 0 , 1 ] , x n + 1 = y n 1 2 H ( x n , y n ) [ I λ H ( x n , y n ) ] ( y n x n ) .
(3)

For p= 1 2 , λ=0, the method becomes Chebyshev’s iterative method (see [13]). For p= 2 3 , λ=1, the method becomes inverse-free Jarratt iterative method (see [14, 15]). In this paper, we establish a Kantorovich-type third-order convergence theorem for this kind of method by using majorizing function to improve the result [12].

1 Main results

In this section, we establish a Newton-Kantorovich convergence theorem via majorizing function. Let g(t)= 1 6 K t 3 + 1 2 γ t 2 t+η, where K, γ, η are positive real numbers. Denote

α= 2 γ + γ 2 + 2 K ,β=α 1 6 K α 3 1 2 γ α 2 = 2 ( γ + 2 γ 2 + 2 K ) 3 ( γ + γ 2 + 2 K ) 2 .

Theorem 1 Suppose that X and Y are the Banach spaces, and Ω is an open convex subset of X, F:ΩXY has the second order Fréchet derivative, F ( x 0 ) 1 exists for x 0 Ω, and the following conditions hold:

F ( x 0 ) 1 F ( x 0 ) η , F ( x 0 ) 1 F ( x 0 ) γ , F ( x 0 ) 1 ( F ( x ) F ( y ) ) N x y , x , y Ω , 2 + 3 p 2 3 p N K , η < β , S ( x 0 , r 1 ) ¯ Ω ,
(4)

where r 1 r 2 are two positive real roots of the function g(t). Then, for 0<p< 2 3 , the sequence { x n } n 0 generated by (3) is well defined, x n S ( x 0 , r 1 ) ¯ and converges to the unique solution x of equation (1) in S( x 0 ,α).

Theorem 2 Suppose that X and Y are the Banach spaces, and Ω is an open convex subset of X, F:ΩXY has the third-order Fréchet derivative, F ( x 0 ) 1 exists for x 0 Ω, and the following conditions hold:

F ( x 0 ) 1 F ( x 0 ) η , F ( x 0 ) 1 F ( x 0 ) γ , F ( x 0 ) 1 F ( x ) N , F ( x 0 ) 1 ( F ( x ) F ( y ) ) L x y , x , y Ω , ( 1 + 2 p 2 ) L 6 γ ( 1 p ) + N K , η < β , S ( x 0 , r 1 ) ¯ Ω .
(5)

Then for 0<p 2 3 , the sequence { x n } n 0 generated by (3) is well defined, x n S ( x 0 , r 1 ) ¯ and converges to the unique solution x of equation (1) in S( x 0 ,α).

To prove Theorems 1 and 2, we first give some lemmas.

Lemma 1 If ηβ, the polynomial g(t) has two positive real roots r 1 , r 2 (let 0< r 1 < r 2 <+), and a negative real root r 0 ( r 0 >0).

Proof From definition of the function g(t), there follows that g(0)=η>0, lim t g(t)=, hence g(t) has a negative root. Denote it r 0 . We get that g (t)= 1 2 K t 2 +γt1 has the unique positive root α= 2 γ + γ 2 + 2 K , and for t0, g (t)=Kt+γ>0. So, the necessary and sufficient condition that g(t) has two positive roots for t0 is that the minimum of g(t) satisfies g(α)0, that is also ηβ. This completes the proof of Lemma 1. □

Lemma 2 (see [12])

Suppose that the sequences { t n } n 0 and { s n } n 0 are generated by the following iteration t 0 =0,

{ s n = t n g ( t n ) 1 g ( t n ) , H g ( t n , s n ) = 1 p g ( t n ) 1 [ g ( t n + p ( s n t n ) ) g ( t n ) ] , t n + 1 = s n 1 2 H g ( t n , s n ) [ I λ H g ( t n , s n ) ] ( s n t n ) .
(6)

Then for ηβ, { t n }, { s n } are increasing and converge to r 1 .

Lemma 3 Suppose that F(x) satisfies conditions (4) of Theorem  1, xB( x 0 , r 1 ), F ( x ) 1 exists and satisfies the following inequalities:

( I ) F ( x ) 1 F ( x 0 ) g ( x x 0 ) 1 , ( II ) F ( x 0 ) 1 F ( x ) g ( x x 0 ) .

Proof

F ( x 0 ) 1 F ( x ) = F ( x 0 ) 1 F ( x 0 ) + F ( x 0 ) 1 [ F ( x ) F ( x 0 ) ] γ + N x x 0 γ + K x x 0 = g ( x x 0 ) .

By the proof process of Lemma 1, we get g (t)<0, t[0, r 1 ). Hence, for xB( x 0 , r 1 ),

F ( x 0 ) 1 F ( x ) I = F ( x 0 ) 1 [ F ( x ) F ( x 0 ) F ( x 0 ) ( x x 0 ) + F ( x 0 ) ( x x 0 ) ] 0 1 F ( x 0 ) 1 [ F ( x 0 + t ( x x 0 ) ) F ( x 0 ) ] d t ( x x 0 ) + γ x x 0 0 1 N t d t x x 0 2 + γ x x 0 1 2 K x x 0 2 + γ x x 0 = 1 + g ( x x 0 ) < 1 .

By the Banach theorem, we know ( F ( x 0 ) 1 F ( x ) ) 1 = F ( x ) 1 F ( x 0 ) exists, and

F ( x ) 1 F ( x 0 ) 1 1 I F ( x 0 ) 1 F ( x ) g ( x x 0 ) 1 .

This completes the proof of Lemma 3. □

Lemma 4 Suppose that the nonlinear operator F:ΩXY is defined on an open convex subset Ω of a Banach space X with values in a Banach space Y, F has the second-order Frechét derivative, and the sequences { x n }, { y n } are generated by (3). Then the following formula holds for all natural numbers n:

F ( x n + 1 ) = 0 1 F ( y n + t ( x n + 1 y n ) ) ( 1 t ) d t ( x n + 1 y n ) 2 + 0 1 [ F ( x n + t ( y n x n ) ) ( 1 t ) 1 2 F ( x n + p t ( y n x n ) ) ] d t ( y n x n ) 2 1 λ 2 0 1 F ( x n + p t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) ( y n x n ) 1 2 0 1 [ F ( x n + t ( y n x n ) ) F ( x n + p t ( y n x n ) ) ] d t ( y n x n ) × H ( x n , y n ) ( y n x n ) + λ 2 0 1 F ( x n + t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) H ( x n , y n ) ( y n x n ) .

Proof

F ( x n + 1 ) = F ( x n + 1 ) F ( y n ) F ( y n ) ( x n + 1 y n ) + F ( y n ) + F ( y n ) ( x n + 1 y n ) F ( x n + 1 ) = 0 1 F ( y n + t ( x n + 1 y n ) ) ( 1 t ) d t ( x n + 1 y n ) 2 + F ( y n ) + F ( y n ) ( x n + 1 y n ) , F ( x n ) H ( x n , y n ) = 1 p [ F ( x n + p ( y n x n ) ) F ( x n ) ] = 0 1 F ( x n + p t ( y n x n ) ) d t ( y n x n ) , F ( y n ) + F ( y n ) ( x n + 1 y n ) = F ( y n ) F ( x n ) F ( x n ) ( y n x n ) 2 1 2 F ( y n ) H ( x n , y n ) [ I λ H ( x n , y n ) ] ( y n x n ) = 0 1 F ( x n + t ( y n x n ) ) ( 1 t ) d t ( y n x n ) 2 1 2 [ F ( y n ) F ( x n ) ] H ( x n , y n ) [ I λ H ( x n , y n ) ] ( y n x n ) 1 2 F ( x n ) H ( x n , y n ) [ I λ H ( x n , y n ) ] ( y n x n ) = 0 1 F ( x n + t ( y n x n ) ) ( 1 t ) d t ( y n x n ) 2 1 2 0 1 F ( x n + p t ( y n x n ) ) d t ( y n x n ) 2 + λ 2 0 1 F ( x n + p t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) ( y n x n ) 1 2 0 1 F ( x n + t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) ( y n x n ) + λ 2 0 1 F ( x n + t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) H ( x n , y n ) ( y n x n ) .

Hence,

F ( x n + 1 ) = 0 1 F ( y n + t ( x n + 1 y n ) ) ( 1 t ) d t ( x n + 1 y n ) 2 + 0 1 [ F ( x n + t ( y n x n ) ) ( 1 t ) 1 2 F ( x n + p t ( y n x n ) ) ] d t ( y n x n ) 2 1 λ 2 0 1 F ( x n + p t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) ( y n x n ) 1 2 0 1 [ F ( x n + t ( y n x n ) ) F ( x n + p t ( y n x n ) ) ] d t ( y n x n ) × H ( x n , y n ) ( y n x n ) + λ 2 0 1 F ( x n + t ( y n x n ) ) d t ( y n x n ) H ( x n , y n ) H ( x n , y n ) ( y n x n ) .

This completes the proof of Lemma 4. □

Proof of Theorem 1 By induction, we can prove, for n0, that the following formulae hold:

( I n ) : x n S ( x 0 , t n ) ¯ , ( II n ) : F ( x n ) 1 F ( x 0 ) g ( t n ) 1 , F ( x 0 ) 1 F ( x n ) g ( t n ) , ( III n ) : y n x n s n t n , ( IV n ) : y n S ( x 0 , s n ) ¯ , ( V n ) : x n + 1 y n t n + 1 s n .

In fact, by Lemma 2, we know that { t n } is increasing and converges to the minimum positive root of the function g(t). Hence, t n < r 1 for all natural numbers n. It is easy to verify it for the case n=0. By using mathematical induction, we now suppose the formulae above also hold for n0. Then

( I n + 1 ): x n + 1 x 0 x n + 1 y n + y n x 0 t n + 1 s n + s n = t n + 1 .

By Lemma 3, and the fact that g ( t ) 1 , g (t) are increasing on [0, r 1 ], we get ( II n + 1 ).

( III n + 1 ) : 0 1 F ( x 0 ) 1 [ F ( y n + t ( x n + 1 y n ) ) ( 1 t ) d t ( x n + 1 y n ) 2 0 1 g ( y n x 0 + t ( x n + 1 y n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 0 1 g ( s n + t ( t n + 1 s n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 , 0 1 F ( x 0 ) 1 [ F ( x n + t ( y n x n ) ) ( 1 t ) 1 2 F ( x n + p t ( y n x n ) ) ] d t 0 1 F ( x 0 ) 1 [ F ( x n + t ( y n x n ) ) F ( x n ) ] ( 1 t ) d t + 1 2 0 1 F ( x 0 ) 1 [ F ( x n + p t ( y n x n ) ) F ( x n ) ] d t ( 2 + 3 p ) N 12 y n x n , 0 1 F ( x 0 ) 1 [ F ( x n + t ( y n x n ) ) F ( x n + p t ( y n x n ) ) ] d t 0 1 N ( 1 p ) t y n x n d t ( 1 p ) N 2 ( s n t n ) , H ( x n , y n ) = F ( x n ) 1 0 1 F ( x n + p t ( y n x n ) ) ( y n x n ) d t H ( x n , y n ) = F ( x n ) 1 F ( x 0 ) 0 1 F ( x 0 ) 1 F ( x n + p t ( y n x n ) ) ( y n x n ) d t H ( x n , y n ) g ( t n ) 1 0 1 g ( t n + p t ( s n t n ) ) d t ( s n t n ) = H g ( t n , s n ) .

From Lemmas 3 and 4, we get

F ( x 0 ) 1 F ( x n + 1 ) 0 1 g ( s n + t ( t n + 1 s n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 + ( 2 + 3 p ) N 12 ( s n t n ) 3 + 1 λ 2 0 1 g ( t n + p t ( s n t n ) ) d t ( H g ( t n , s n ) ) ( s n t n ) 2 + 1 2 ( 1 p ) N 2 ( H g ( t n , s n ) ) ( s n t n ) 3 + λ 2 0 1 g ( t n + t ( s n t n ) ) d t ( s n t n ) 2 H g 2 ( t n , s n ) 0 1 g ( s n + t ( t n + 1 s n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 + ( 2 3 p ) 12 2 + 3 p 2 3 p N ( s n t n ) 3 1 λ 2 0 1 g ( t n + p t ( s n t n ) ) d t H g ( t n , s n ) ( s n t n ) 2 1 2 ( 1 p ) K 2 H g ( t n , s n ) ( s n t n ) 3 + λ 2 0 1 g ( t n + t ( s n t n ) ) d t ( s n t n ) 2 H g 2 ( t n , s n ) 0 1 g ( s n + t ( t n + 1 s n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 + ( 2 3 p ) K 12 ( s n t n ) 3 1 λ 2 0 1 g ( t n + p t ( s n t n ) ) d t H g ( t n , s n ) ( s n t n ) 2 1 2 ( 1 p ) K 2 H g ( t n , s n ) ( s n t n ) 3 + λ 2 0 1 g ( t n + t ( s n t n ) ) d t ( s n t n ) 2 H g 2 ( t n , s n ) = g ( t n + 1 ) .

Hence, we get

y n + 1 x n + 1 F ( x n + 1 ) 1 F ( x 0 ) F ( x 0 ) 1 F ( x n + 1 ) y n + 1 x n + 1 g ( t n + 1 ) 1 g ( t n + 1 ) = s n + 1 t n + 1 , ( IV n + 1 ) : y n + 1 x 0 y n + 1 x n + 1 + x n + 1 x 0 ( s n + 1 t n + 1 ) + t n + 1 = s n + 1 , ( V n + 1 ) : x n + 2 y n + 1 = 1 2 H ( x n + 1 , y n + 1 ) [ I λ H ( x n + 1 , y n + 1 ) ] ( y n + 1 x n + 1 ) x n + 2 y n + 1 1 2 H ( x n + 1 , y n + 1 ) [ 1 + λ H ( x n + 1 , y n + 1 ) ] ( y n + 1 x n + 1 ) x n + 2 y n + 1 1 2 H g ( t n + 1 , s n + 1 ) [ 1 λ H g ( t n + 1 , s n + 1 ) ] ( s n + 1 t n + 1 ) x n + 2 y n + 1 = t n + 2 s n + 1 .

So, the sequence { x n } n 0 generated by (3) is well defined, x n S ( x 0 , r 1 ) ¯ and { x n } converges to the solution x of equation (1) on S ( x 0 , r 1 ) ¯ . Now, we prove the uniqueness. If y is also the solution of equation (1) in S( x 0 ,α), then, by the proof of Lemma 1, we know that g (t)<0, t[0,α).

Thus,

F ( x 0 ) 1 0 1 F ( x + t ( y x ) ) d t I = 0 1 F ( x 0 ) 1 { F [ x + t ( y x ) ] F ( x 0 ) } d t 0 1 0 1 F ( x 0 ) 1 F { x 0 + s [ x + t ( y x ) x 0 ] } x x 0 + t ( y x ) d s d t 0 1 0 1 g [ s x x 0 + t ( y x ) ] x x 0 + t ( y x ) d s d t = 0 1 { g [ x x 0 + t ( y x ) ] g ( 0 ) } d t = 0 1 { g [ ( 1 t ) ( x x 0 ) + t ( y x 0 ) ] } d t + 1 < 1 .

By the Banach theorem, we know the inverse of

0 1 F [ x + t ( y x ) ] dt

exists. Since

0=F ( y ) F ( x ) = 0 1 F [ x + t ( y x ) ] dt ( y x ) ,

we have y = x . This completes the proof of uniqueness. Thus, the proof of Theorem 1 is complete. □

Proof of Theorem 2 We know that F:ΩXY has the three-order Fréchet derivative. Then

H g ( x n , y n ) = g ( t n ) 1 0 1 g ( t n + p t ( s n t n ) ) d t ( s n t n ) H g ( x n , y n ) = 1 1 γ t n 1 2 t n 2 0 1 [ K ( t n + p t ( s n t n ) ) + γ ] d t ( s n t n ) γ ( s n t n ) > 0 , 0 1 F ( x 0 ) 1 [ F ( x n + t ( y n x n ) ) ( 1 t ) 1 2 F ( x n + p t ( y n x n ) ) ] d t 0 1 0 1 F ( x 0 ) 1 [ F ( x n + σ t ( y n x n ) ) F ( x n ) ] t ( 1 t ) d σ d t y n x n + p 2 0 1 0 1 F ( x 0 ) 1 [ F ( x n + p σ t ( y n x n ) ) F ( x n ) ] t d σ d t y n x n + 2 3 p 12 F ( x 0 ) 1 F ( x n ) y n x n ( 1 + 2 p 2 ) L 24 y n x n 2 + 2 3 p 12 N y n x n , ( 1 + 2 p 2 ) L 24 y n x n 4 + 1 2 ( 1 p ) N 2 ( H g ( t n , s n ) ) ( s n t n ) 3 [ ( 1 + 2 p 2 ) L 6 ( 1 p ) ( s n t n ) ( H g ( t n , s n ) ) + N ] ( 1 p ) 4 ( H g ( t n , s n ) ) ( s n t n ) 3 [ ( 1 + 2 p 2 ) L 6 γ ( 1 p ) + N ] ( 1 p ) 4 ( H g ( t n , s n ) ) ( s n t n ) 3 ( 1 p ) 4 K H g ( t n , s n ) ( s n t n ) 3 .

Hence,

F ( x 0 ) 1 F ( x n + 1 ) 0 1 g ( s n + t ( t n + 1 s n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 + ( 1 + 2 p 2 ) L 24 y n x n 4 + 2 3 p 12 N y n x n 3 + 1 λ 2 0 1 g ( t n + p t ( s n t n ) ) d t ( H g ( t n , s n ) ) ( s n t n ) 2 + 1 2 ( 1 p ) N 2 ( H g ( t n , s n ) ) ( s n t n ) 3 + λ 2 0 1 g ( t n + t ( s n t n ) ) d t ( s n t n ) 2 H g 2 ( t n , s n ) 0 1 g ( s n + t ( t n + 1 s n ) ) ( 1 t ) d t ( t n + 1 s n ) 2 + ( 2 3 p ) 12 K ( s n t n ) 3 1 λ 2 0 1 g ( t n + p t ( s n t n ) ) d t H g ( t n , s n ) ( s n t n ) 2 ( 1 p ) K 4 H g ( t n , s n ) ( s n t n ) 3 + λ 2 0 1 g ( t n + t ( s n t n ) ) d t ( s n t n ) 2 H g 2 ( t n , s n ) = g ( t n + 1 ) .

Using the same proof method as in Theorem 1, we get assertion of Theorem 2. □

2 Numerical examples

In this section, we apply the convergence ball result and show two numerical examples.

Example 1 Suppose that F(x)= 1 6 x 3 + 1 6 x 2 5 6 x+ 1 3 =0, we consider initial point x 0 =0, Ω=[1,1]. We can choose

η=γ= 2 5 ,N= 6 5 ,L=0.
(7)

Hence,

K=N= 6 5 ,β= 2 ( γ + 2 γ 2 + 2 K ) 3 ( γ + γ 2 + 2 K ) 2 = 3 5 ,η<β.
(8)

Moreover, by Theorem 2, we get that the sequence x n (n0) generated by (3) is well defined and convergent.

Example 2 Consider the following integral equations

x(s)=1+ 1 4 x(s) 0 1 s s + t x(t)dt
(9)

and the space X=C[0,1] with the norm

x= max 0 s 1 | x ( s ) | .
(10)

This equation arises in the theory of the radiative transfer, neutron transport and in the kinetic theory of gasses. Let us define the operator F on X by

F(x)= 1 4 x(s) 0 1 s s + t x(t)dtx(s)+1.
(11)

Then, for x 0 =1, we get the following results:

N = 0 , L = 0 , K = 0 , F ( x 0 ) 1 = 1.5304 , η = F ( x 0 ) 1 F ( x 0 ) = 0.2652 , γ = F ( x 0 ) 1 F ( x 0 ) = 1.5304 × 2 1 4 max 0 s 1 | 0 1 s s + t d t | = 0.5303 , 2 ( γ + 2 γ 2 + 2 K ) 3 ( γ + γ 2 + 2 K ) 2 = 0.9429 > η ,

this means that the hypotheses of Theorem 2 hold.