Abstract
Spontaneous emission lifetime orientation distributions of a twolevel quantum emitter in metallic nanorod structures are theoretically investigated by the rigorous electromagnetic Green function method. It was found that spontaneous emission lifetime strongly depended on the transition dipole orientation and the position of the emitter. The anisotropic factor defined as the ratio between the maximum and minimum values of the lifetimes along different dipole orientations can reach up to 10^{3}. It is much larger than those in dielectric structures which are only several times usually. Our results show that the localized plasmonic resonance effect provides a new degree of freedom to effectively control spontaneous emission by the dipole orientation of the quantum emitters.
PACS: 78.67.Qa; 73.20.Mf; 42.50.p
Background
Spontaneous emission (SE) control of quantum emitters (QEs) is of great importance in basic quantum optics researches and new type of quantum information devices design due to its diverse range of applications such as solar energy harvesting [1, 2], lightemitting diodes [3, 4], miniature lasers [5, 6], and singlephoton source for quantum information science [7, 8].
It is well known that, the spontaneous emission lifetime of QEs can be strongly modulated by the surrounding environment. So, various photonic systems, such as microcavities [9, 10] and photonic crystals [11–13], have been proposed to manipulate the lifetime of QEs. Recently, metallic nanostructures have attracted extensive of interest as they support surface plasmonic resonances, which are the collective oscillations of the electron gas in metals [14, 15]. Surface plasmons may greatly enhance the local electromagnetic field that leads to nanoscale ‘hot spots’ [16, 17]. Such local enhancement capability enables the quantum control of the SE process at nanoscale [18–23]. An important advantage of controlling SE of QEs is its wide range of application. In [24], the SE enhancement of a single quantum dot coupled to silver nanowire was successfully measured. Such measurements proved that the SE exhibits antibunching. This means that plasmonic nanowires can provide singlephoton sources, as has been demonstrated in [25] by using NV centers. Besides, alternative plasmonic systems have been presented to manipulate SE enhancement, such as hybrid waveguide [26] and plasmonic resonators [27]. Moreover, the efficient coupling between single emitter and the propagating plasmonic modes enables the realization of single photon transistor devices [28, 29]. However, the investigation of SE control with different transition dipole orientations of a QE is still a challenging task. To date, no clear picture has emerged of the orientationdependent characteristics around the metallic particles but it is of great importance in the research of interaction between light and matter [30].
In this paper, we investigate the SE lifetime of a twolevel QE with different dipole moment orientations around a plasmonic nanorod. Using the Finite Element Method, we calculate the SE lifetime, anisotropic factor and find that the SE lifetime has strongly orientation dependent character which is different from the structures reported before in photonic crystals and dielectric sphere structures [11, 31, 32].
Methods
In this manuscript, we only consider the case of weak QEfield coupling regime. In this regime, the SE decay lifetimes for both homogeneous and inhomogeneous environment are calculated by the formula [32–34]
where ω is the angular frequency, c is the speed of light in vacuum, \overrightarrow{\mathit{\mu}} is the unit vector of the dipole moment \mathrm{Im}\left[\overleftrightarrow{\mathit{G}}\left(\overrightarrow{\mathit{r}},\overrightarrow{\mathit{r}},\mathit{\omega}\right)\right] stands for the imaginary part of Green's tensor, and \overrightarrow{\mathit{r}} is the position of the QE. Notice that the SE lifetime depends on the dipole orientation. As is known that the quantity \mathrm{Im}\left[\overleftrightarrow{\mathit{G}}\left(\overrightarrow{\mathit{r}},\overrightarrow{\mathit{r}},\mathit{\omega}\right)\right] in vacuum equals \mathit{\omega}\overleftrightarrow{\mathit{I}}/\left(6\mathit{\pi}\mathit{c}\right), where \overleftrightarrow{\mathit{I}} is a unit tensor. We can easily deduce the SE lifetime τ_{vac}(ω) = [ω^{3}d^{ 2}/(3πℏϵ_{0}c^{3})]^{ 1} of QE embedded in vacuum according to Equation 1. Then, the normalized orientationdependent SE lifetime could be defined as \tilde{\mathit{\tau}}\left(\overrightarrow{\mathit{r}},\mathit{\omega},\overrightarrow{\mathit{\mu}}\right)=\mathit{\tau}\left(\overrightarrow{\mathit{r}},\mathit{\omega},\overrightarrow{\mathit{\mu}}\right)/{\mathit{\tau}}_{\mathrm{\text{vac}}}\left(\mathit{\omega}\right). To evaluate the difference degree of the lifetime orientation distribution, we define the anisotropic factor as
The Green tensor in Equation 1 satisfies
where ϵ is the relative permittivity. It could be calculated from the electric field of a dipole source as [35, 36]
where \overrightarrow{\mathit{d}}\left(\overrightarrow{\mathit{r}},\mathit{\omega}\right)=\overrightarrow{\mathit{d}}\left(\mathit{\omega}\right)\mathit{\delta}\left(\overrightarrow{\mathit{r}}{\overrightarrow{\mathit{r}}}_{0}\right) is a dipole source at position {\overrightarrow{\mathit{r}}}_{0}. The whole elements of the Green tensor could be attained after setting the dipole source with x, y, and z polarizations in turn.
Results and discussion
In this paper, the dielectric constant of the gold nanorod is obtained by fitting the experimental data from Johnson and Christy with piecewise cubic interpolation [37]. The nanorod is placed upon the SiO_{2} substrate with refractive index of 1.5. Other parts are set as vacuum. We consider rectangular, cylinder, and capsule nanorods in the simulations. The corresponding schematic diagrams of the structures are shown in Figure 1a,b,c, respectively. The cross sections of each structure at x = 0 plane are shown in Figure 1d,e,f, respectively. The width of the rectangular nanorod is a = 20 nm, the length is L = 120 nm, and the height is h = 20 nm. The diameter of the cylinder nanorod is d = 20 nm and the length is also L = 120 nm. The capsule nanorod is modified from the cylinder shape nanorod by changing the two ends into a halfsphere shape. The total length of the capsuleshaped nanorod is still L = 120 nm. We perform the simulations by the Finite Element Method with the help of the software COMSOL Multiphysics. The coordinate origin is set at the center of the nanorod, and the nanorod is placed along the x axis. We adopt the perfectly matched layer (PML) for the absorption boundary.
In order to calculate for the plasmonic resonance frequency, we consider a planewave normal incident with x polarization as \overrightarrow{\mathit{E}}={\overrightarrow{\mathit{e}}}_{\mathit{x}}\phantom{\rule{0.5em}{0ex}}\text{exp}\phantom{\rule{0.5em}{0ex}}\left\{\mathit{i}{\mathit{k}}_{0}\mathit{z}\right\}, where k_{0} is the wave number in vacuum. The extinction spectrums of the rectangular, cylinder, and capsuleshaped nanorods are indicated in black, reddashed, and bluedotted curves in Figure 2a, respectively. We observe the peaks at wavelength of 1,013, 997, and 946 nm for the rectangular, cylinder, and capsule nanorods, respectively. The plasmonic resonance wavelengths shift and the peak values vary a little for different nanorods. The corresponding distributions of the x component of electric field at z = 0 plane are shown in Figure 2b,c,d, respectively. The x component of electric field retains the same sign in the nanorod, which means the charges between the two ends of the nanorod are opposite, indicating an electric dipole mode [38].
Then, we study the orientationdependent lifetime distributions around the nanorods at the corresponding plasmonic resonance wavelengths. The orientation distributions around the rectangular, cylinder, and capsule nanorods at wavelengths of 1,013, 997, and 946 nm are shown in Figure 3a,b,c, respectively. We select four typical points A (70,0,0) nm, B (70,10,0) nm, C (60,20,0) nm, and D (0,20,0) nm for instance. The black arrows are the guides for the lifetime orientation distributions at these points. The yellow area is the cross section of the nanorod at z = 0 plane. The threedimensional view of the nanorod is inset at the topright position. The red color corresponds to the long lifetime, while the blue color corresponds to the short lifetime. The lifetime of the emitter has been normalized with that of the vacuum. We find that the maximum of the color bar is smaller than 1. So in all dipole directions, the lifetime of the emitters around the gold nanorods are shorter than that of the vacuum. The lifetime orientation distributions of the QE in the considered structures seem to be pancakelike with a sunken center but with different contours. It illustrates that the SE lifetime strongly depended on the direction of the transition dipole. This phenomenon is due to the localized surface plasmons which are longitudinal dipolar modes at these wavelengths. When the transition dipole moment of the QE is parallel to the electric field's direction of the longitudinal dipolar plasmon mode, the interaction between the QE and the plasmonic mode is the strongest, which leads to the shortest lifetime of the QE. The anisotropy of the lifetime distribution of the QE at point A around the capsule nanorod is larger than those around the rectangular and cylinder nanorods. This is because the end of the capsule nanorod is sharper than that of the other two nanorods, which results in the stronger field enhancement around the ends. At points B and C, the lifetime orientation distributions of the QEs are different for these nanorods. At point D, the lifetime orientation distributions of the QEs are similar for the cylinder and capsule nanorods, but different for the rectangular nanorod. This is because the sides of cylinder and capsule nanorods are round but the side of rectangular nanorod is flat.
As written in the Methods part, we define the anisotropy factor η to evaluate the orientation anisotropy by the ratio of the maximum lifetime over the minimum lifetime in all dipole orientations. The results of rectangular, cylinder, and capsule nanorods are shown in Table 1. The lifetime differs hundreds of times around the end of the rectangular nanorod. The orientation anisotropy of the cylinder nanorod is much stronger than that of the rectangular nanorod. The orientation anisotropy of the capsule nanorod is the strongest, and the anisotropy factor reaches up to three orders of magnitude when the emitter is placed 10 nm to the end of the capsule nanorod.
In order to underline the effect of the localized surface plasmon, we consider dielectric nanorods with the same geometrical parameters but without plasmonic modes. The material of the dielectric nanorod is chosen as Si with refractive index of 3.4. The orientation distributions around the rectangular, cylinder, and capsule dielectric nanorods at wavelengths 1,013, 997, and 946 nm are shown in Figure 3d,e,f, respectively. The green area is the cross section of the Si nanorod at z = 0 plane. We select the four typical points as before. We observe that the maximum of the color bar can be larger than 1. So in some dipole directions, the lifetimes of QEs will be longer than those of the vacuum. They are different from the lifetimes of the QE around the metallic nanorod. The anisotropy factors of the rectangular, cylinder and capsuleshaped dielectric nanorod are shown in Table 2. The lifetime differs only several times. The lifetime orientation anisotropy factors are much smaller than the metallic nanorod case.
In the following, we further study the detailed lifetime orientation distributions of the QE near the end of the capsule gold nanorod. The orientation distributions at distance g = 10, 15, 20, 25, and 30 nm to the end of the capsule nanorod at wavelength 946 nm is shown in Figure 4a,b,c,d,e, respectively. The orientation anisotropy factors are shown in Figure 4f. The orientation anisotropy factor reduces as the distance increases. This is because the plasmonic resonance is weakly excited when the QE is far from the nanorod.
Next, we consider the frequency dependence of the orientation anisotropy. We still take the capsule nanorod as example. The QE is set at (70,0,0) nm, 10 nm apart from the end of the nanorod. The orientation distributions of the QE at wavelengths 946, 1,000, 1,050, and 1,100 nm are shown in Figure 5a,b,c,d, respectively. The orientation anisotropy factors are shown in Figure 5e. We find that the orientation anisotropy factor reduces as the wavelength moves farther away from the peak wavelength. The reduction of the orientation anisotropy factor is because the plasmon mode is weakly excited when the wavelength is moving away from the central peak frequency.
At last, we study the nanorod length dependence of orientation anisotropy. The orientation distributions of the QE at the distance 10 nm apart from the end of the capsule nanorod with length L = 120, 90, 60, and 20 nm are shown in Figure 6a,b,c,d, respectively. In the case of L = 20 nm, the nanorod turns into a sphere. The dipole plasmonic mode of nanorods with length L = 120, 90, 60, and 20 nm are at wavelengths 946, 791, 644, and 389 nm, respectively. The extinction spectrums of different nanorod lengths are not shown here. The orientation anisotropy factors are shown in Figure 6e. The orientation anisotropy is reduced rapidly as the nanorod length reduced.
Conclusions
In summary, we have studied the SE lifetime orientation distributions around a metallic nanorod by using the rigorous electromagnetic Green function method. Rectangular, cylinder, and capsule nanorods are considered. The anisotropic factor near the end of the gold capsule nanorod can reach up to 10^{3}. By comparing the results of a dielectric nanorod, we point out the importance of localized plasmonic resonance to the lifetime orientation anisotropy distributions. The factors of QEs position, frequency, and the length of nanorod are investigated in detail. Our results show that the localized plasmonic resonance effect provides a new degree of freedom to effectively control spontaneous emission by the dipole orientation of the QEs.
Abbreviations
 SE:

spontaneous emission
 QE:

quantum emitter.
References
Dang X, Qi J, Klug MT, Chen PY, Yun DS, Fang NX, Hammond PT, Belcher AM: Tunable localized surface plasmonenabled broadband lightharvesting enhancement for highefficiency panchromatic dyesensitized solar cells. Nano Lett 2013, 13: 637–642. 10.1021/nl3043823
Tagliabue G, Eghlidi H, Poulikakos D: Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films. Nanoscale 2013, 5: 9957–9962. 10.1039/c3nr03273f
Koller DM, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg FR, Leitner A, List EJW, Krenn JR: Organic plasmonemitting diode. Nat Photonics 2008, 2: 684–687. 10.1038/nphoton.2008.200
Wierer JJ, David A, Megens MM: IIInitride photoniccrystal lightemitting diodes with high extraction efficiency. Nat Photonics 2009, 3: 163–169. 10.1038/nphoton.2009.21
Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U: Demonstration of a spaserbased nanolaser. Nature 2009, 460: 1110–1112. 10.1038/nature08318
Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X: Plasmon lasers at deep subwavelength scale. Nature 2009, 461: 629–632. 10.1038/nature08364
Schietinger S, Barth M, Alchele T, Benson O: Plasmonenhanced single photon emission from a nanoassembled metaldiamond hybrid structure at room temperature. Nano Lett 2009, 9: 1694–1698. 10.1021/nl900384c
Esteban R, Teperik TV, Greffet JJ: Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett 2010, 104: 026802.
Min B, Ostby E, Sorger V, UlinAvila E, Yang L, Zhang X, Vahala K: HighQ surfaceplasmonpolariton whisperinggallery microcavity. Nature 2009, 457: 455–458. 10.1038/nature07627
Xiao YF, Zou CL, Li BB, Li Y, Dong CH, Han ZF, Gong Q: HighQ exterior whisperinggallery modes in a metalcoated microresonator. Phys Rev Lett 2010, 105: 153902.
Liu JF, Jiang HX, Jin CJ, Wang XH, Gan ZS, Jia BH, Gu M: Orientationdependent local density of states in threedimensional photonic crystals. Phys Rev A 2012, 85: 015802.
Chen GY, Liu JF, Jiang HX, Zhuo XL, Yu YC, Jin CJ, Wang XH: Slab thickness tuning approach for solidstate strong coupling between photonic crystal slab nanocavity and a quantum dot. Nanoscale Res Lett 2013, 8: 187. 10.1186/1556276X8187
Yamamoto T, Pashkin YA, Astafiev O, Nakamura Y, Tsai JS: Demonstration of conditional gate operation using superconducting charge qubits. Nature 2003, 425: 941–944. 10.1038/nature02015
Muhlschlegel P, Eisler HJ, Martin OJ, Hecht B, Pohl DW: Resonant optical antennas. Science 2005, 308: 1607–1609. 10.1126/science.1111886
Genet C, Ebbesen TW: Light in tiny holes. Nature 2007, 445: 39–46. 10.1038/nature05350
Castanié E, Krachmalnicoff V, Cazé A, Pierrat R, De Wilde Y, Carminati R: Distance dependence of the local density of states in the near field of a disordered plasmonic film. Opt Lett 2012, 37: 3006–3008. 10.1364/OL.37.003006
Chen XW, Agio M, Sandoghdar V: Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. Phys Rev Lett 2012, 108: 233001.
DiazEgea C, Sigle W, van Aken P, Molina S: High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands. Nanoscale Res Lett 2013, 8: 337. 10.1186/1556276X8337
Sinev IS, Petrov MI, Samusev AK, Rutckaia VV, Lipovskii AA: Nanoscale patterning of metal nanoparticle distribution in glasses. Nanoscale Res Lett 2013, 8: 260. 10.1186/1556276X8260
Hoogenboom JP, SanchezMosteiro G, des Francs GC, Heinis D, Legay G, Dereux A, van Hulst NF: The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity. Nano Lett 2009, 9: 1189–1195. 10.1021/nl803865a
Girard C, Dujardin E, Marty R, Arbouet A, des Francs GC: Manipulating and squeezing the photon local density of states with plasmonic nanoparticle networks. Phys Rev B 2010, 81: 153412.
Gu Y, Wang L, Ren P, Zhang J, Zhang T, Martin OJ, Gong Q: Surfaceplasmoninduced modification on the spontaneous emission spectrum via subwavelengthconfined anisotropic Purcell factor. Nano Lett 2012, 12: 2488–2493. 10.1021/nl300655n
Beams R, Smith D, Johnson TW, Oh SH, Novotny L, Vamivakas AN: Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center. Nano Lett 2013, 13: 3807–3811. 10.1021/nl401791v
Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007, 450: 402–406. 10.1038/nature06230
Huck A, Kumar S, Shakoor A, Anderson UL: Controlled coupling of a single nitrogenvacancy center to a silver nanowire. Phys Rev Lett 2011, 106: 096801.
Barnard ES, Coenen T, Vesseur EJ, Polman A, Brongersma ML: Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence. Nano Lett 2011, 11: 4265–4269. 10.1021/nl202256k
de Leon NP, Shields BJ, Yu CL, Englund DE, Akimov AV, Lukin MD, Park H: Tailoring lightmatter interaction with a nanoscale plasmon resonator. Phys Rev Lett 2012, 108: 226803.
Chang DE, Sorensen AS, Demler EA, Lukin MD: A singlephoton transistor using nanoscale surface plasmons. Nat Phys 2007, 3: 807–812. 10.1038/nphys708
Kolchin P, Oulton RF, Zhang XA: Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level. Phys Rev Lett 2011, 106: 113601.
Taminiau TH, Stefani FD, van Hulst NF: Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub and superradiant modes. Nano Lett 2011, 11: 1020–1024. 10.1021/nl103828n
Vos W, Koenderink A, Nikolaev I: Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment. Phys Rev A 2009, 80: 053802.
Liu JF, Jiang HX, Gan ZS, Jia BH, Jin CJ, Wang XH, Gu M: Lifetime distribution of spontaneous emission from emitter(s) in threedimensional woodpile photonic crystals. Opt Express 2011, 19: 11623–11630. 10.1364/OE.19.011623
Dung HT, Knöll L, Welsch DG: Decay of an excited atom near an absorbing microsphere. Phys Rev A 2001, 64: 013804.
Chen GY, Yu YC, Zhuo XL, Huang YG, Jiang HX, Liu JF, Jin CJ, Wang XH: Ab initio determination of local coupling interaction in arbitrary nanostructures: application to photonic crystal slabs and cavities. Phys Rev B 2013, 87: 195138.
Tomaš MS: Green function for multilayers: light scattering in planar cavities. Phys Rev A 1995, 51: 2545–2559. 10.1103/PhysRevA.51.2545
Novotny L, Hecht B: Principles of NanoOptics. Cambridge: Cambridge University Press; 2006.
Johnson PB, Christy RW: Optical constants of the noble metals. Phys Rev B 1972, 6: 4370–4379. 10.1103/PhysRevB.6.4370
Liu M, Lee TW, Gray S, GuyotSionnest P, Pelton M: Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 2009, 102: 107401.
Acknowledgements
This work was financially supported by the National Basic Research Program of China (2010CB923200), the National Natural Science Foundation of China (Grant U0934002), and the Ministry of Education of China (Grant V200801). Jingfeng Liu thanks the National Natural Science Foundation of China (Grant 11204089, Grant 11334015) for their financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
JML participated in the derivation of equations, performed the numerical simulations, interpreted the simulation results, and drafted the manuscript. JFL participated in the derivation of the equation and revised the manuscript. YCY participated in the analysis of the simulation results and revised the manuscript. LYZ revised the manuscript. XHW conceived of the study and revised the manuscript substantially. All authors had read and approved the final manuscript.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, JM., Liu, JF., Yu, YC. et al. Strong anisotropic lifetime orientation distributions of a twolevel quantum emitter around a plasmonic nanorod. Nanoscale Res Lett 9, 194 (2014). https://doi.org/10.1186/1556276X9194
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1556276X9194
Keywords
 Surface plasmons
 Spontaneous emission
 Lifetime distribution
 Nanorod