Background
Electrophysiology (EP) studies can diagnose & treat patients with arrhythmia. MR-guided EP is growing, driven by the ability of cardiac MRI to provide high-contrast images. For intra-procedural use, MRI provides images of the acute state of radio-frequency ablation (RFA) lesions, e.g. necrosis, edema and hemorrhage, that potentially reduce recurrences & complications [1, 2]. Unfortunately, acquisition of these images using surface MRI coils, considering the high-spatial-resolution (~1x1x2mm3) requirements, can be lengthy (scar~10 mins/scan, edema~12 mins/scan) [3], severely increasing the duration of MR-guided procedures. As demonstrated in other body regions, e.g. endorectal MRI, and with other imaging modalities (Intra-Cardiac Echo), intracavitary probes provide increased Signal-to-Noise-Ratio (SNR), due to their proximity to the area of interest. An Intra-cardiac MR imaging (ICMRI) coil may provide substantially higher SNR, but a complete application must also provide accurate heart motion compensation [4], in order to produce non-blurred images. We constructed an ICMRI catheter, with integrated imaging & positional-tracking elements, optimized for (1) cardiovascular introduction as a sheath "riding on" an EP ablation catheter & for (2) close-proximity imaging (~4 cm FOV) during RFA delivery.
Methods
The ICMRI catheter consists of a deployable imaging coil & 4 tracking micro-coils at the catheter tip. The imaging coil is folded during vascular navigation (4.5-mm diameter). During the expansion, the imaging coil forms a circular loop of 40mm in diameter which images a ~4cm FOV, while the tracking coils form a tetrahedral array (Fig. 1a-b, d-f) for accurate motion-compensation [4]. The imaging coil, constructed of two windings of 38-gauge copper wire, was woven into an expandable protective nylon mesh. The foldable plastic arms (Fig. 1d), covered by the nylon mesh, provide a tetrahedral structure on which the 4 tracking micro-coils (2mm diameter) were mounted. The imaging coil was connected to a 123 MHz (3T) miniaturized tuning/matching circuit in a pocket on the ICMRI sheath (Fig. 1c) (~11 dB reflection-coefficient, loaded). To evaluate imaging performance, the ICMRI was compared to a 32-channel Invivo cardiac-array during ex-vivo swine left-ventricular (LV) & left-atrial (LA) imaging.
ICMRI catheter with imaging coil (a) collapsed to allow navigation within the vasculature, and (b) expanded for imaging; (c) tuning/matching micro-electronics. ICMRI without protective nylon mesh, showing the foldable plastic arm structure, on which both the imaging and tracking coils were mounted, during closing (d) and opening (e-f).
Results
ICMRI provided 2-4 times the SNR of the Invivo array at distances of 5-8 cm from the coil, for both T1-w GRE and T2-w TSE (Fig. 2). Efficient breath-hold (20-sec) T2-w scans were also possible. Operation in tandem with an MR-compatible EP ablation catheter (St. Jude Medical) was also demonstrated.
ICMRI imaging at 3T (a) Breath-held T2-w; LV short-axis; ICMRI alone (Top) versus ICMRI+ Invivo array (Bottom), (b) LA short axis; ICMRI alone (Top, 2.1X magnified) versus ICMRI+Invivo array (Bottom, 1X magnified); (c) LV long-axis T2-w. ICMRI catheter (red arrow) mounted on EP ablation catheter, showing the EP catheter tip (yellow arrows) contacting the papillary muscle.
Conclusions
The ICMRI catheter allows for 4-16x faster imaging during MR-guided RFA, improving temporal efficiency. ICMRI supports catheterization, in analogy with ICE's advantages (trans-septal puncture, valve passage), supporting low-SNR imaging contrasts (Strain, Diffusion).
Funding
AHA 10SDG261039, NIH R03 EB013873-01A1, NIH U41-RR019703.
References
Schmidt : MRM14.
Reddy : J Cardiovascular EP08.
Schmidt : Circ: Arrhythmia & EP09.
Qin : MRM13.
Author information
Authors and Affiliations
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Chen, Y., Tse, Z.T., Wang, W. et al. Intra-cardiac MR imaging & MR-tracking catheter for improved MR-guided EP. J Cardiovasc Magn Reson 17 (Suppl 1), P237 (2015). https://doi.org/10.1186/1532-429X-17-S1-P237
Published:
DOI: https://doi.org/10.1186/1532-429X-17-S1-P237