\({\mathrm {H}}\)-Harmonic Maaß-Jacobi forms of degree 1

The analytic theory of some indefinite theta series


It was shown in previous work that the one-variable \(\widehat{\mu }\)- function defined by Zwegers (and Zagier) and his indefinite theta series attached to lattices of signature \((r\!+\!1,1)\) are both Heisenberg harmonic Maaß-Jacobi forms. We extend the concept of Heisenberg harmonicity to Maaß-Jacobi forms of arbitrary many elliptic variables, and produce indefinite theta series of “product type” for non-degenerate lattices of signature \((r\!+\!s,s)\). We thus obtain a clean generalization of \(\widehat{\mu }\) to these negative definite lattices. From restrictions to torsion points of Heisenberg harmonic Maaß-Jacobi forms, we obtain harmonic weak Maaß forms of higher depth in the sense of Zagier and Zwegers. In particular, we explain the modular completion of some, so-called degenerate indefinite theta series in the context of higher depth mixed mock modular forms. The structure theory for Heisenberg harmonic Maaß-Jacobi forms developed in this paper also explains a curious splitting of Zwegers’s two-variable \(\widehat{\mu }\)-function into the sum of a meromorphic Jacobi form and a one-variable Maaß-Jacobi form.


  1. 1.

    Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. (2014). doi:10.1186/s40687-014-0011-8

    Google Scholar 

  2. 2.

    Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bringmann, K., Mahlburg, K., Rhoades, R.C.: Taylor coefficients of mock-Jacobi forms and moments of partition statistics. Math. Proc. Cambridge Philos. Soc. 157(2), 231–251 (2014). doi:10.1017/S0305004114000292

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bringmann, K., Olivetto, R.: Kac-Wakimoto characters and non-holomorphic Jacobi Forms. Bringmann’s homepage. Trans. Am. Math. Soc. (to appear) (2015)

  5. 5.

    Bringmann, K., Richter, O.K.: Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms. Adv. Math. 225(4), 2298–2315 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bringmann, K., Raum, M., Richter, O.K.: HarmonicMaass-Jacobi forms with singularities and a theta-like decomposition. arXiv:1207.5600 (2012)

  7. 7.

    Bringmann, K., Raum, M., Richter, O.K.: Kohnen’s limit process for real-analytic Siegel modular forms. Adv. Math. 231(2), 1100–1118 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bruinier, J.H.: Borcherds products on O(2, l ) and Chern classes of Heegner divisors. Lecture Notes in Mathematics, vol. 1780. Springer, Berlin (2002)

    Book  Google Scholar 

  9. 9.

    Bringmann, K., Rolen, L., Zwegers, S.: On the Fourier coefficients of negative index meromorphic Jacobi forms. vol 6. arXiv:1501.0447 (2015)

  10. 10.

    Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group, vol. 163. Progress in mathematics. Birkhäuser, Basel (1998)

    Book  Google Scholar 

  11. 11.

    Conley, C., Raum, M.: Harmonic Maaß-Jacobi forms of degree 1 with higher rank indices. arXiv:1012.2897 (2010)

  12. 12.

    Duke, W., Imamoğlu, Ö., Tóth, Á.: Cycle integrals of the j-function andmock modular forms. Ann. Math. (2) 173(2), 947–981 (2011)

    Article  Google Scholar 

  13. 13.

    Dabholkar, A., Murthy, S., Zagier, D.B.: Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074 (2012)

  14. 14.

    Eichler, M., Zagier, D.B.: The theory of Jacobi forms, vol. 55. Progress in Mathematics. Birkhäuser Boston Inc., Boston (1985)

  15. 15.

    Göttsche, L., Zagier, D.B.: Jacobi forms and the structure of Donaldson invariants for 4-manifolds with \(b_{+}=1\). Selecta Math. (N.S.) 4(1), 69–115 (1998)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Helgason, S.: Differential operators on homogenous spaces. Acta Math. 102(3), 239–299 (1959)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hikami, K., Lovejoy, J.: Torus knots and quantum modular forms. Res. Math. Sci. 2, 2 (2015). doi:10.1186/s40687-014-0016-3

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kohnen, W.: Nonholomorphic Poincaré-type series on Jacobi groups. J. Number Theory 46(1), 70–99 (1994)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kac, V.G., Wakimoto, M.: Integrable highest weightmodules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215(3), 631–682 (2001)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kac, V.G., Wakimoto, M.: Representations of affine superalgebras andmock theta functions III. vol. 7. arXiv:1505.0104 (2015)

  21. 21.

    Lau, S.C., Zhou, J.: Modularity of open Gromov-Witten potentials of elliptic orbifolds. arXiv:1412.1499 (2014)

  22. 22.

    Maass, H.: Lectures on modular functions of one complex variable. Notes by Sunder Lal. Tata Institute of Fundamental Research Lectures onMathematics, No. 29. Tata Institute of Fundamental Research, Bombay (1964)

  23. 23.

    Oberdieck, G.: A Serre derivative for even weight Jacobi Forms. arXiv:1209.5628 (2012)

  24. 24.

    Pitale, A.: Jacobi Maaß forms. Abh. Math. Semin. Univ. Hambg. 79(1), 87–111 (2009). doi:10.1007/s12188-008-0013-9

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ramanujan, S.: Collected papers of Srinivasa Ramanujan. In: Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M. (eds.) Third printing of the 1927 original, With a new preface and commentary by Bruce C. Berndt. AMS Chelsea Publishing, Providence (2000)

  26. 26.

    Raum, M.: Dual weights in the theory of harmonic Siegel modular forms. PhD thesis. University of Bonn (2012)

  27. 27.

    Rolen, L.: A new construction of Eisenstein’s completion of theWeierstrass zeta function. vol. 7. arXiv:1504.0378 (2015)

  28. 28.

    Skoruppa, N.P.: Jacobi forms of critical weight and Weil representations. Modular forms on Schiermonnikoog. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  29. 29.

    Skoruppa, N.P.: Developments in the theory of Jacobi forms. Automorphic functions and their applications (Khabarovsk, 1988). Khabarovsk Acad. Sci. USSR Inst. Appl. Math. (1990)

  30. 30.

    Vignéras, M.F.: Séries thêta des formes quadratiques indéfinies. Séminaire Delange-Pisot-Poitou, 17e année (1975/76), Théorie des nombres: Fasc. 1, Exp. No. 20. Secrétariat Math., Paris (1977)

  31. 31.

    Zagier, D.: Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). Séminaire Bourbaki. vol. 2007/2008. Astérisque No. 326 (2009), Exp. No. 986, vii–viii, 143–164 (2010)

  32. 32.

    Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104(1), 57–75 (1994). doi:10.1007/BF02830874

    MathSciNet  Article  Google Scholar 

  34. 34.

    Zwegers, S.: Mock theta functions. PhD thesis. Universiteit Utrecht (2002)

Download references


The author thanks Kathrin Bringmann, Olav Richter, and Sander Zwegers for helpful discussions and for their remarks. He is especially grateful to one of the referees who helped with his comments to work around some stylistic glitches.

Compliance with ethical guidelines

Competing interests The author declares that they have no competing interests.

Author information



Corresponding author

Correspondence to Martin Westerholt-Raum.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westerholt-Raum, M. \({\mathrm {H}}\)-Harmonic Maaß-Jacobi forms of degree 1. Mathematical Sciences 2, 12 (2015). https://doi.org/10.1186/s40687-015-0032-y

Download citation


  • Real-analytic Jacobi forms
  • Generalized \(\widehat{\mu }\)-functions
  • Mixed mock modular forms

Mathematics Subject Classification

  • Primary 11F50
  • Secondary 11F27