Exposing relative endoscopy in unitary symmetric spaces

Open Access


We introduce a new class of symmetric space orbital integrals important for applications in certain relative trace formula appearing in the theory of automorphic representations. We verify a fundamental lemma for U2×U2↪U4 via an explicit calculation, giving the first known example of endoscopy for symmetric spaces and showing strong evidence that there is a general theory of endoscopy lurking in this situation.

AMS subject classification Primary 20G05


Endoscopy Orbital integral Unitary group Trace formula Representation theory 


  1. 1.
    Borovoi M: Abelian Galois Cohomology of Reductive Groups vol. 626. American Mathematical Society, 201 Charles Street, Providence, RI. USA 02904-2294 (1998).Google Scholar
  2. 2.
    Getz, JR, Wambach, E: Twisted relative trace formulae with a view towards unitary groups. Amer. J. Math. 135, 1–57 (2013).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kottwitz, R: Transfer factors for lie algebras. Representation Theory Am. Math. Soc. 3(6), 127–138 (1999).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Levy, P: Involutions of reductive lie algebras in positive characteristic. Adv. Mathematics. 210(2), 505–559 (2007).MATHCrossRefGoogle Scholar
  5. 5.
    Ngô, BC: Le lemme fondamental pour les algebres de lie. Publications mathématiques de l’IHÉS. 111(1), 1–169 (2010).MATHCrossRefGoogle Scholar

Copyright information

© Polák; licensee Springer. 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Authors and Affiliations

  1. 1.Department of MathematicsMcGill UniversityMontrealCanada

Personalised recommendations