Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor
- 287 Downloads
Abstract
Integrating microfluidics with biosensors is of great research interest with the increasing trend of lab-on-the chip and point-of-care devices. Though there have been numerous studies performed relating microfluidics to the biosensing mechanisms, the study of the sensitivity variation due to microfluidic flow is very much limited. In this paper, the sensitivity of interdigitated electrodes was evaluated at the static drop condition and the microfluidic flow condition. In addition, this study demonstrates the use of gold nanoparticles to enhance the sensor signal response and provides experimental results of the capacitance difference during cancer antigen-125 (CA-125) antigen–antibody conjugation at multiple concentrations of CA-125 antigens. The experimental results also provide evidence of disease-specific detection of CA-125 antigen at multiple concentrations with the increase in capacitive signal response proportional to the concentration of the CA-125 antigens. The capacitive signal response of antigen–antibody conjugation on interdigitate electrodes has been enhanced by approximately 2.8 times (from 260.80 to 736.33 pF at 20 kHz frequency) in static drop condition and approximately 2.5 times (from 205.85 to 518.48 pF at 20 kHz frequency) in microfluidic flow condition with gold nanoparticle-coating. The capacitive signal response is observed to decrease at microfluidic flow condition at both plain interdigitated electrodes (from 260.80 to 205.85 pF at 20 kHz frequency) and gold nano particle coated interdigitated electrodes (from 736.33 to 518.48 pF at 20 kHz frequency), due to the strong shear effect compared to static drop condition. However, the microfluidic channel in the biosensor has the potential to increase the signal to noise ratio due to plasma separation from the whole blood and lead to the increase concentration of the biomarkers in the blood volume for sensing.
Keywords
Biosensor Interdigitated gold electrodes Microfluidic channel Gold nanoparticles Capacitance measurementsAbbreviations
- CA 125
cancer antigens 125
- ml
milliliter
- µl
microliter
- DNA
deoxyribonucleic acid
- kDa
kilodalton
- GNPs
gold nano particles
- PBS
phosphate buffer saline
- PDMS
polydimethylsiloxane
- PMMA
poly(methyl methacrylate)
- MIBK
methyl isobutyl ketone
- IPA
isopropyl alcohol
- SAM
self-assembled monolayer
- EDC
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
- NHS
N-hydroxysulfoxuccinimide
- mg
microgram
- DRIE
deep reactive ion etching
- AFM
atomic force microscope
1 Introduction
An electrical biosensor detects biomolecular reactions by measuring changes in electrical properties like voltage, current, impedance, capacitance etc., [1]. Measuring capacitance has advantages such as high sensitivity to small changes in dielectric parameters, the possibility of minimizing the sensor size, and low power consumption requirement [2]. The integration of microfluidics and electrical immuno biosensing has growing demand due to its potential to reduce processing time and have low reagent consumption [3]. Bange et al. [4] was the first group to integrate microfluidics into electrochemical protein immune assays. The immuno biosensing on the microfluidic platform helped to make the electrochemical biosensing assays portable which allows the sensing mechanism to be easily implemented in point of care devices [5]. The implementation of the biosensing in the microchannels significantly reduces the sample requirement from milliliter (ml) to microliter (µl). A low sample volume is highly desired for the bodily fluid samples such as blood. The incorporation of the microfluidic platform on the biosensor provide the feasibility of expanding the sensor to multiplex assay to detect the panel of protein biomarkers that minimize the false positive and false negative scenarios in cancer diagnosis which commonly arise from measuring a single biomarker [6, 7, 8]. Though there has been many researchers reported on the integration of the microfluidics to the immunosensors, most of the studies are performed on microfluidic flow driven by the external pumps and flow control devices [9, 10]. In this current study the flow in the microchannel is self-driven and controlled by altering the hydrophilicity of the microchannel. The primary factors contributing to the microfluidic biosensors performance are probe immobilization, specific binding, and the fundamental limits of probe affinity. Due to the tight confinement of the flow of the antigen solution in the microscale, the flows in the microchannel exerts high shear stresses on the surface of the microchannel and influence the stability of the immobilized antibodies on the surface [11, 12]. So the study of the sensing signal response during the flow condition attracted many researchers to develop novel techniques of antibody immobilization for enhanced stability.
For enhanced binding capabilities of the biomolecules on the sensing platform, nanoparticles and nanotechnology have attracted attention in recent years for their potential applications. The recent technology advancement in the microfluidic and nano technology present multiple opportunities for the development of lab-on-chip (LOC) systems to perform a complete set of biomedical assays to achieve the low cost, highly sensitive point-of-care diagnostics [13, 14, 15, 16]. Nanoparticles are favorable for biosensing, due to their potential for unique surface chemistry, electrical properties, and being in the same size range as biomolecules. Certain nanoparticles are biocompatible, which enables them to bond with various functional groups like proteins, ligands, peptides, DNA, fatty acids and plasmids for serving the sensing purpose [17, 18]. There are various noble metals like gold, silver, palladium, rhodium, platinum etc. which are biocompatible [19]. Although many noble metals can function as biosensors, gold nanoparticles show promise for biosensing due to their unique surface chemistry, high electron densities, chemical inertness, and their possession of good electrical and optical properties [4, 6, 7, 8, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. The gold nanoparticles help in improving the sensitivity and actively targets the biomarker as it provides the platform for high surface to volume ratio [21, 22]. In label free biosensors, the capacitive measurements are expected to change significantly with different properties such as the dielectric constants [1]. CA-125, a widely used biomarker for detection and monitoring of the ovarian cancer, is an exceptionally large protein (200 to 2000 kDa due to high variable glycosylation) [23, 24]. As the capacitance measurement during the biological interactions is directly influenced by the physiochemical properties of an individual protein, the study of the CA-125 protein detection with its unique properties has gained importance in the research of biosensing.
Daniels et al. [25] has reported that the microfluidic biosensor performance can be enhanced with further research on the probe immobilization techniques. An improved understanding of the relationship between the antibody binding and the capacitance change would enable improved biosensor design and sensitivity. Though there are multiple recent studies performed by researchers, such as Goddard and Erickson [26], who have studied the stability of the biomolecules under the shear flow condition, most of them are limited to the study of DNA immobilization. Though the major targeted probes of the biosensors are proteins and DNA, there is very limited study reported on the antibody immobilization under the shear flow conditions during self-driven flow. This paper reports the sensitivity study of the antigen detection under shear flow condition during self-driven flow of antigen solution, when immobilized with the gold nano particles (GNPs). The sensitivity study performed in this paper on the capacitive signal response of the gold nano particle coated interdigitated electrodes compared to the plain interdigitated electrodes during the antigen–antibody conjugation provide the experimental evidence to the research of nano particle influence on the biosensor research. The study of sensing signal response of antigen–antibody conjugation with multiple concentrations of the antigens discussed in this paper, pave the way for study of sensitivity and specificity of the detection. Also, the change in the sensing signal due to the microfluidic flow of antigen solution when compared to static drop condition during the antigen–antibody conjugation aid the microfluidic biosensing researchers to understand the influence of the shear stress on the biosensing in microchannel.
2 Methods/experimental
2.1 Chemicals and apparatus
Thiourea (CH4N2S), phosphate buffer saline (PBS), 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), and carboxylic functionalized (Lipoic acid) gold nanospheres were purchased from NanoComposix (USA). The CA-125 monoclonal antibodies and the CA-125 antigens were bought from Meridian Life Science. The polydimethylsiloxane (PDMS) base and curing agent were bought from Fisher Scientific.
2.2 Interdigitated electrodes fabrication
AFM image of the plain electrodes
2.3 Insulation of electrodes and addition of gold nanoparticles
Surface activation process of the carboxylic functionalized gold nanoparticles for antibodies binding
2.4 Immobilization of CA-125 antibodies
The sensor surface was washed using PBS solution and dried with nitrogen gas for removal of excess gold nanoparticles. Following this step, the CA-125 antibodies were immobilized on top of the surface activated gold nanoparticles by incubating it with 0.5 µl of 7 mg/ml CA-125 antibodies in PBS solution, for 4 h. The incubation step took place at 4 °C. The sensor surface was rinsed using PBS solution and the non-reacted groups on the sensor surface were blocked by addition of approximately 1 µl of ethanolamine on top of the modified sensor for 1 h. The sensor was further cleaned with PBS and de-ionized water.
2.5 Fabrication of PDMS microchannel
The fabrication of the microchannel is primarily performed in two steps. In the first step, a Si-mold with the required microchannel pattern is fabricated. A positive photoresist (SPR 955) is used to have the photoresist remain only at the microchannel area after UV exposure using the UV mask aligner (since the mask is chromed at the microchannels). The Si-wafer is then etched with deep reactive ion etching (DRIE) to a depth of 107 µm except at the microchannel surface area that is covered with photoresist. By etching the surface unprotected by the photoresist, the negative of the microchannels protrude from the surface of Si-wafer.
The microchannels are fabricated out of polydimethylsiloxane (PDMS) using the Si-wafer mold with negative microchannel. The PDMS base and curing agent are mixed in 10:1 ratio and degassed in the vacuum chamber. The PDMS mixture is poured on the Si-wafer with microchannel and baked for 45 min at 100 °C. The PDMS is then peeled from the Si-wafer and treated with plasma for 100 s to convert the hydrophobic nature of PDMS to hydrophilic. The inlet and outlet ports of the microchannel are holes of 500 μm diameter. The PDMS is then attached to the Si-wafer with the nano circuit to close the channel.
2.6 Addition of CA-125 antigens
a Schematic representation at various stages of biosensor fabrication: (i) Bare electrodes (ii) SAM layer on the bare electrodes (iii) immobilized gold nano particles on the SAM layer (iv) Antibody immobilization on the electrodes (v) antigen–antibody conjugation on the electrodes. b Real image of the biosensor with microchannel
2.7 Electrical measurements
All the electrical measurements in this experiment were taken using a two-point probe station and the capacitance was measured using an Agilent 4284A Precision LCR meter. The selected frequency range was between 10 and 100 kHz with 10 kHz steps. The capacitive values were measured for (a) bare electrodes (b) after insulation of the electrodes by SAM layer, (c) after addition of carboxylic functionalized gold nanoparticles, (d) after the immobilization of the CA-125 antibodies, (e) after the interaction of the PBS solution with the sensor surface with the immobilized CA-125 antibodies, (f) after conjugation of CA-125 antigens and antibodies when antigens solution with different concentration of CA-125 antigens were dropped on the sensing surface, and (g) after conjugation of CA-125 antigens and antibodies when antigens solution flows through the microchannel. All the capacitive measurements were done at 100 mV amplitude with the 0.5 V voltage during this experiment.
3 Results and discussion
3.1 Interdigitated electrodes
The interdigitated electrodes produce certain electric fields when voltage is applied, for capacitive measurements. The interdigitated electrodes provide greater effective surface area within the same volume or space which would drastically reduce the sensing setup and cost as compared to other capacitive measurement systems [28, 29, 30, 31]. The electric field produced by the interdigitated electrodes is within the nanoscale range, which falls in the region of interest as the size of the antigens and antibodies lies in this range [32, 34]. The dielectric properties of the medium between the interdigitated electrodes provide the electrical information such as conductivity, permittivity, capacitance and impedance. The electric field lines produced by the interdigitated electrodes depend on the electrical input, dielectric medium, and the geometry of the electrodes.
a Schematic of the electrode with active ‘Top’ and ‘Side’ surfaces of the and b the approximately simplified model of a with single surface model for both Top and Side in this analysis
where \(\upvarepsilon_{{{\text{r}}_{\text{T }} }}\) and \(\upvarepsilon_{{{\text{r}}_{\text{S }} }}\) is the relative permittivity of the material on the top and side surfaces of the electrode, \(\upvarepsilon {\text{o}}\) is the vacuum permittivity, \({\text{A}}_{{{\text{eff}}_{\text{Top}} }}\) and \({\text{A}}_{{{\text{eff}}_{\text{Side}} }}\) are the effective surface areas on the top and side surfaces of the electrode, and \({\text{d}}_{{{\text{eff}}_{{_{\text{Top}} }} }}\) is the effective distances neighboring two top surfaces and \({\text{d}}_{{{\text{eff}}_{{_{\text{Side}} }} }}\) is between the adjacent two side surfaces of the electrode.
When the SAM, Antibody and Antigen/Antibody layers are assumed to be homogenous over the surface of electrode, the capacitance of the circuit can be calculated from the equivalent model, with the single surface (Top + Side) as shown in Fig. 4b.
a Schematic of the electrode with active ‘Top’ and ‘Side’ surfaces of the and b the schematic of the approximately simplified model of a with single surface model for both Top and Side in this analysis
3.2 Surface characterization of different layers of the biosensor
The AFM image of the interdigitated gold electrode coated having SAM layer deposited on top
AFM images of the Gold nanoparticles present on top of gold electrodes (Left) and the CA-125 antibodies present on top of the gold nanoparticles in the sensor platform (Right)
3.3 CA-125 antigen solution flow in microchannel
a The image microchannel during the flow of antigen solution. b Schematic of the microchannel with the shear rate measurement
3.4 Electrical characterization
3.4.1 Capacitance measurement of different layers of biosensor
The capacitance is measured at various stages consisting of different sub-layers. All the measurements were taken using a two-point probe station and the dielectric parameters were calculated using Agilent 4284A Precision LCR meter. The frequency range was taken from 10 to 100 kHz for all the sub-layers using 10 kHz steps.
Capacitance variation over frequency for different layers of the sensor
3.4.2 Capacitance measurement of a CA-125 antigen conjugation with CA-125 antibodies immobilized on biosensor
The study used a solution of PBS solvent with and without CA-125 antigens respectively. First for the baseline study, plain PBS solution without CA-125 antigens was measured with CA-125 antibodies coated on the nano electrodes. A drop of PBS solution (approximately 1 µl) was placed on the biosensor. The PBS solution capacitance measurements were taken in the frequency range from 10 to 100 kHz. The capacitance values almost remained unchanged over the entire frequency range. The capacitance curve of the plain PBS solution was regarded as the ‘Baseline’. The highest and lowest capacitive values of the ‘Baseline’ curve were measured to be 96.90 pF and 69.19 pF respectively.
Capacitance variation over frequency for both the cases: the baseline and CA-125 antigens during Ag–Ab conjugation
3.4.3 Capacitance measurement comparison of antigen–antibody interactions on plain interdigitated electrodes and gold nanoparticle layered interdigitated electrodes, respectively
Capacitance variation over frequency for the CA-125 Ag–Ab conjugation on the plain interdigitated electrodes and gold nanoparticle coated interdigitated electrodes
3.4.4 Capacitance measurement comparison of antigen–antibody interaction with multiple concentrations of antigens
Capacitance variation over frequency for the CA-125 Ag–Ab conjugation with various concentrations of CA-125 antigens and PBS without CA-125 antigens
3.4.5 Capacitance measurement comparison of CA-125 antigen–antibody conjugation at static and microfluidic flow condition
The plot in Fig. 12 shows the variation in the signal response between the static condition and the microfluidic flow condition during the CA-125 Ab–Ag conjugation. The carboxylic gold nanoparticles sensing platform without the microchannel (static drop condition) resulted in consistently higher capacitance values because there is no external disturbance on antigen and antibody interaction whereas the microchannel flow has the external effect by the shear of the flow. The highest capacitance is recorded to be 822.93 pF at 10 kHz and the lowest is 342.18 pF at 100 kHz.
3.4.5.1 Microfluidic flow condition of the biofluid sample with CA-125 antigens
Capacitance variation over frequency for gold nanoparticles under static and microfluidic flow condition
The capacitance was recorded from the highest value of 807.30 pF to the lowest value of 234.51 pF within the frequency range from 10 to 100 kHz during the flow of the antigen solution in the microchannel. The tight confinement of the microfluidic flow exerts high surface shear stress which impact the stabilization of the antibodies that are bonded to the sensing platform [37, 38]. The shear forces applied by the fluid on the antibodies that are bonded to the electrode sensing platform in the microchannel induce mechanical breakage of the weak bonds of the antibodies with the electrode [39, 40, 41]. The breakage of bonds of the antibodies with the sensing surface could influence the stability of the immobilization of antibodies. So due to the existence of shear in the microfluidic flow condition, the stability of the CA-125 antibody would be significantly lower, which could directly influence the sensitivity. So due to lack of any shear in ‘static’ condition, the stability of the CA-125 antibody was significantly higher and directly enhanced the sensitivity.
3.4.5.2 Capacitance variation during CA-125 antigen antibody interaction at different conditions (at 20 kHz frequency)
Capacitance variation during CA-125 Ag–Ab interaction at different conditions at 20 kHz frequency
As shown in Fig. 14, the change in the capacitance from the static drop condition to microfluidic condition for plain electrode is 54.95 pF and for gold nanoparticle coated electrodes is 217.85 pF. As explained in the earlier sections, the gold nano particles (GNPs) coated electrodes has the higher sensing signal than the plain electrodes due to the enhanced antibodies immobilization on the gold nano particles with the high surface to volume ratio and orientation freedom. Also, GNPs has the higher resistance to shear flow than plain interdigitated electrodes for microchannel flow.
4 Conclusions
The incorporation of microfluidics with biosensing has the following advantages: multiplex assay and simultaneous separation of the targeted biomolecules for detection during the flow, for enhanced signal to noise ratio. However, it has the limitation due to the shear effect caused by the microfluidic flow on the antibodies immobilized on the sensing platform. In the current study, sensitivity variation due to microfluidic flow was established by detecting CA-125 antigens in biofluid using gold interdigitated electrodes. At static drop condition, the signal response of antigen–antibody conjugation in gold nanoparticle-coated interdigitated electrodes is approximately 2.8 times than in plain interdigitated electrodes. At 20 kHz frequency, the signal response of plain interdigitated electrodes during antigen–antibody conjugation has increased from 260.80 to 736.33 pF when the gold nano particles are coated on the plain interdigitated electrodes. At microfluidic flow condition, the signal response of antigen–antibody conjugation in gold nanoparticle-coated interdigitated electrodes is 2.5 times than in plain interdigitated electrodes. At 20 kHz frequency, the signal response of plain interdigitated electrodes during antigen–antibody conjugation has increased from 205.85 to 518.48 pF when the gold nano particles are coated on the plain interdigitated electrodes. Based on the measured results, the following conclusions can be made. (1) The functionality of the individual layers in the sensing platform is validated with the measured change in capacitance. (2) The gold nanoparticle coated interdigitated electrode has higher sensitivity than the plain interdigitated electrode during the CA-125 antigen antibody interaction. (3) The capacitive sensing signal response increased proportionally with the increase in concentration of the antigens during the antigen–antibody conjugation. (4) The effect of shear on the sensing signal response is evident given the lower capacitive signal during antigen–antibody conjugation in the microfluidic flow condition as compared to the static drop condition. The observed effect of shear stress in the microfluidic flow condition during the antigen–antibody conjugation can be mitigated by incorporating the following design changes in the sensing platform and microchannel. (i) The sensing platform with nano well-structure immobilized the antibody into each well, can reduce the shear effect during the microfluidic flow. (ii) The surface treatment to the microchannel for controlling the hydrophilicity of channel reduce the shear caused by the microfluidic flow significantly and thus the effect of the shear on sensing platform can be controlled. Though our focus was on isothermal microfluidic devices, the future work on evaluating the influence of thermal conditions on the sensing signal response in the microfluidic platform would provide additional information regarding the stability of the bioconjugation chemistries in thermocycling microfluidic biosensing applications.
Notes
Authors’ contributions
BBN and DeM have contributed to sample preparation, data curation, data analysis, and original draft writing. BBN and ESL have contributed for review and editing the manuscript. JUL has contributed to procuring experimental resources, data acquisition and analysis. HS and SZ have contributed to procuring the resources and samples, and reviewing and editing the manuscript according to journal specifications. DuM, MNUB and BBN have contributed to the software support for acquiring and managing the experimental data. ESL has designed and supervised the biosensor project along with advising and reviewing the manuscript. All authors read and approved the final manuscript.
Acknowledgements
The authors acknowledge the research support from New Jersey Institute of Technology (NJIT). This research is carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.
Competing interests
The authors declare that they have no competing interests.
Availability of data materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Funding
This research is supported by the National Science Foundation Fund (Grant ID: NSF IIP-1643861).
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.C. Berggren, B. Bjarnason, G. Johansson, Capacitive biosensors. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 13(3), 173–180 (2001)Google Scholar
- 2.V. Tsouti, C. Boutopoulos, I. Zergioti, S. Chatzandroulis, Capacitive microsystems for biological sensing. Biosens. Bioelectron. 27(1), 1–11 (2011)Google Scholar
- 3.S. Kumar, S. Kumar, M.A. Ali, P. Anand, V.V. Agrawal, R. John, S. Maji, B.D. Malhotra, Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol. J. 8(11), 1267–1279 (2013)Google Scholar
- 4.A. Bange, H.B. Halsall, W.R. Heineman, Microfluidic immunosensor systems. Biosens. Bioelectron. 20(12), 2488–2503 (2005)Google Scholar
- 5.D. Itoh, F. Sassa, T. Nishi, Y. Kani, M. Murata, H. Suzuki, Droplet-based microfluidic sensing system for rapid fish freshness determination. Sens. Actuators B Chem. 171, 619–626 (2012)Google Scholar
- 6.S.M. Hanash, S.J. Pitteri, V.M. Faca, Mining the plasma proteome for cancer biomarkers. Nature 452(7187), 571 (2008)Google Scholar
- 7.A.P. Turner, Biosensors–sense and sensitivity. Science 290(5495), 1315–1317 (2000)Google Scholar
- 8.C. Yu, J. Irudayaraj, Multiplex biosensor using gold nanorods. Anal. Chem. 79(2), 572–579 (2007)Google Scholar
- 9.R. Vaidyanathan, L.M. Van Leeuwen, S. Rauf, M.J. Shiddiky, M. Trau, A multiplexed device based on tunable nanoshearing for specific detection of multiple protein biomarkers in serum. Sci. Rep. 5, 9756 (2015)Google Scholar
- 10.E. Zeidan, S. Li, Z. Zhou, J. Miller, M.G. Sandros, Single-multiplex detection of organ injury biomarkers using SPRi based nano-immunosensor. Sci. Rep. 6, 36348 (2016)Google Scholar
- 11.C. Huang, C. Tsou, The implementation of a thermal bubble actuated microfluidic chip with microvalve, micropump and micromixer. Sens. Actuators A 210, 147–156 (2014)Google Scholar
- 12.D. Erickson, X. Liu, R. Venditti, D. Li, U.J. Krull, Electrokinetically based approach for single-nucleotide polymorphism discrimination using a microfluidic device. Anal. Chem. 77(13), 4000–4007 (2005)Google Scholar
- 13.H.J. Lee, T.T. Goodrich, R.M. Corn, SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal. Chem. 73(22), 5525–5531 (2001)Google Scholar
- 14.E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181 (2014)Google Scholar
- 15.L. Malic, D. Brassard, T. Veres, M. Tabrizian, Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10(4), 418–431 (2010)Google Scholar
- 16.W. Wang, T.B. Jones, Moving droplets between closed and open microfluidic systems. Lab Chip 15(10), 2201–2212 (2015)Google Scholar
- 17.X. Ma, Y. Wu, S. Jin, Y. Tian, X. Zhang, Y. Zhao, L. Yu, X.J. Liang, Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11), 8629–8639 (2011)Google Scholar
- 18.S. Loyprasert, P. Thavarungkul, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, P. Kanatharana, Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens. Bioelectron. 24(1), 78–86 (2008)Google Scholar
- 19.R.A. Sperling, W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 368(1915), 1333–1383 (2010)Google Scholar
- 20.Z. Altintas, S.S. Kallempudi, Y. Gurbuz, Gold nanoparticle modified capacitive sensor platform for multiple marker detection. Talanta 118, 270–276 (2014)Google Scholar
- 21.X. Li, M. Yu, Z. Chen, X. Lin, Q. Wu, A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sen. Actuators B Chem. 239, 874–882 (2017)Google Scholar
- 22.J.M. Pingarrón, P. Yáñez-Sedeño, A. González-Cortés, Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53(19), 5848–5866 (2008)Google Scholar
- 23.S. Sarojini, A. Tamir, H. Lim, S. Li, S. Zhang, A. Goy, A. Pecora, K.S. Suh, Early detection biomarkers for ovarian cancer. J. Oncol. 2012 (2012)Google Scholar
- 24.A.M. Whited, K.V. Singh, D. Evans, R. Solanki, An electronic sensor for detection of early-stage biomarker/s for ovarian cancer. BioNanoScience 2(4), 161–170 (2012)Google Scholar
- 25.J.S. Daniels, N. Pourmand, Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12), 1239–1257 (2007)Google Scholar
- 26.J.M. Goddard, D. Erickson, Bioconjugation techniques for microfluidic biosensors. Anal. Bioanal. Chem. 394(2), 469 (2009)Google Scholar
- 27.R. Raghav, S. Srivastava, Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sens. Actuators B Chem. 220, 557–564 (2015)Google Scholar
- 28.Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators A 136(2), 518–526 (2007)Google Scholar
- 29.H.E. Ayliffe, A.B. Frazier, R.D. Rabbitt, Electric impedance spectroscopy using microchannels with integrated metal electrodes. J. Microelectromech. Syst. 8(1), 50–57 (1999)Google Scholar
- 30.E.W. Washburn, The dynamics of capillary flow. Phys. Rev. 17(3), 273 (1921)Google Scholar
- 31.S.H. Tan, N.T. Nguyen, Y.C. Chua, T.G. Kang, Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3), 032204 (2010)Google Scholar
- 32.B.B. Nunna, D. Mandal, S. Zhuang, E.S. Lee, Innovative point-of-care (POC) micro biochip for early stage ovarian cancer diagnostics. Sens. Transducers 214(7), 12–20. http://www.sensorsportal.com/HTML/DIGEST/P_2934.htm (2017)Google Scholar
- 33.W. Limbut, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, P. Thavarungkul, A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Anal. Chim. Acta 561(1–2), 55–61 (2006)Google Scholar
- 34.S.S. Kallempudi, Y. Gurbuz, A nanostructured-nickel based interdigitated capacitive transducer for biosensor applications. Sens. Actuators B Chem. 160(1), 891–898 (2011)Google Scholar
- 35.D. Mandal, B.B. Nunna, S. Zhuang, S. Rakshit, E.S. Lee, Carbon nanotubes based biosensor for detection of cancer antigens (CA-125) under shear flow condition. Nano Struct. Nano Objects 15, 180–185 (2018)Google Scholar
- 36.B.B. Nunna, D. Mandal, S. Zhuang, E.S. Lee, A standalone micro biochip to monitor the cancer progression by measuring cancer antigens as a point-of-care (POC) device for enhanced cancer management. in Healthcare Innovations and Point of Care Technologies (HI-POCT), (IEEE, Amsterdam, 2017), pp. 212–215Google Scholar
- 37.C. Berggren, G. Johansson, Capacitance measurements of antibody–antigen interactions in a flow system. Anal. Chem. 69(18), 3651–3657 (1997)Google Scholar
- 38.Y. Cai, G. Jiang, J. Liu, Q. Zhou, Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal. Chem. 75(10), 2517–2521 (2003)Google Scholar
- 39.H. A Abdulbari, E. A Basheer, Investigating the enhancement of microfluidics-based electrochemical biosensor response with different microchannel dimensions. Curr. Anal. Chem. 13(5), 361–369 (2017)Google Scholar
- 40.B.B. Nunna, S. Zhuang, E.S. Lee, Flow control mechanism of capillary driven flow in microchannel using non-mechanical forces. in APS Meeting Abstracts (2016)Google Scholar
- 41.B.B. Nunna, S. Zhuang, E.S. Lee, Influence on capillary flow of human blood in PDMS micro channels due to various surface treatments. in ASME ICNMM Abstracts (2016)Google Scholar
- 42.B.B. Nunna, E.S. Lee, Point-of-care (POC) micro biochip for cancer diagnostics. in Proceedings of the TechConnect World Innovation Conference and Expo, (2017), pp. 14–17Google Scholar
- 43.B.B. Nunna, S. Zhuang, I. Malave, E.S. Lee, Ovarian cancer diagnosis using micro biochip. in NIH-IEEE 2015 Strategic Conference on Healthcare Innovations and Point-of-Care Technologies for Precision Medicine, (PCHT15-0056), (2015), pp. 9–10Google Scholar
- 44.B.B. Nunna, S. Zhuang, E.S. Lee, Hemorheology in PDMS micro channel with varied surface roughness. in APS Meeting Abstracts, (2015)Google Scholar
- 45.E.S. Lee, B. B. Nunna, United States Patent Application 15/811186. Washington, DC: U.S. Patent and Trademark Office. Biomarker detection and self-separation of serum during capillary flow, (2018)Google Scholar
- 46.E.S. Lee, B.B. Nunna, United States Patent Application PCT/US2017/038554. Washington, DC: U.S. Patent and Trademark Office. Microfluidic Diagnostic Assembly, (2017)Google Scholar
- 47.E.S. Lee, B.B. Nunna, United States Patent Application PCT/US2018/018316. Washington, DC: U.S. Patent and Trademark Office. Enhanced Sensitivity and Specificity for Point-of-Care (POC) Micro Biochip, (2018)Google Scholar
- 48.G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3(7), 935–938 (2003)Google Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.