Advertisement

Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ

  • Todd J. TurnerEmail author
  • Paul A. Shade
  • Joel V. Bernier
  • Shiu Fai Li
  • Jay C. Schuren
  • Jonathan Lind
  • Ulrich Lienert
  • Peter Kenesei
  • Robert M. Suter
  • Basil Blank
  • Jonathan Almer
Data Descriptor

Abstract

High-energy diffraction microscopy (HEDM) constitutes a suite of combined X-ray characterization methods, which hold the unique advantage of illuminating the microstructure and micromechanical state of a material during concurrent in situ mechanical deformation. The data generated from HEDM experiments provides a heretofore unrealized opportunity to validate meso-scale modeling techniques, such as crystal plasticity finite element modeling (CPFEM), by explicitly testing the accuracy of these models at the length scales where the models predict their response. Combining HEDM methods with in situ loading under known and controlled boundary conditions represents a significant challenge, inspiring the recent development of a new high-precision rotation and axial motion system for simultaneously rotating and axially loading a sample. In this paper, we describe the initial HEDM dataset collected using this hardware on an alpha-titanium alloy (Ti-7Al) under in situ tensile deformation at the Advanced Photon Source, Argonne National Laboratory. We present both near-field HEDM data that maps out the grain morphology and intragranular crystallographic orientations and far-field HEDM data that provides the grain centroid, grain average crystallographic orientation, and grain average elastic strain tensor for each grain. Finally, we provide a finite element mesh that can be utilized to simulate deformation in the volume of this Ti-7Al specimen. The dataset supporting this article is available in the National Institute of Standards and Technology (NIST) repository (https://doi.org/hdl.handle.net/11256/599).

Keywords

High-energy diffraction microscopy (HEDM) X-ray diffraction Far-field diffraction Near-field diffraction Three-dimensional microstructure Crystal plasticity finite element modeling (CPFEM) 

Notes

Acknowledgements

The authors would like to thank Dr. Adam Pilchak (Air Force Research Laboratory) for providing the Ti-7Al material examined in this study and the staff of the APS-1-ID-E beamline for experimental support. In addition, we would like to thank Dr. Nathan Barton (Lawrence Livermore National Laboratory), a preeminent scholar in the arts of crystal plasticity modeling, whose enduring friendship makes the toils of CPFEM bearable. The authors acknowledge the support from the Materials and Manufacturing Directorate of the U.S. Air Force Research Laboratory. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DEAC02-06CH11357.

References

  1. 1.
    Schuren JC, Shade PA, Bernier JV, Li SF, Blank B, Lind J, Kenesei P, Lienert U, Suter RM, Turner TJ, Dimiduk DM, Almer J (2015) Curr Opin Solid State Mater Sci 19:235CrossRefGoogle Scholar
  2. 2.
    Lienert U, Li SF, Hefferan CM, Lind J, Suter RM, Bernier JV, Barton NR, Brandes MC, Mills MJ, Miller MP, Jakobsen B, Pantleon W (2011) JOM 63(7):70CrossRefGoogle Scholar
  3. 3.
    Poulsen HF (2012) J Appl Crystallogr 45:1084CrossRefGoogle Scholar
  4. 4.
    Dawson PR (2000) Int J Solids Struct 37:115CrossRefGoogle Scholar
  5. 5.
    Turner TJ, Semiatin SL (2011) Model Simul Mater Sci Eng 19:065010CrossRefGoogle Scholar
  6. 6.
    Turner TJ, Shade PA, Groeber MA, Schuren JC (2013) Model Simul Mater Sci Eng 21:015002CrossRefGoogle Scholar
  7. 7.
    Poulsen HF (2004) Three-dimensional X-ray diffraction microscopy: mapping polycrystals and their dynamics. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Suter RM, Hennessy D, Xiao C, Lienert U (2006) Rev Sci Instrum 77:123905CrossRefGoogle Scholar
  9. 9.
    Li SF, Suter RM (2013) J Appl Crystallogr 46:512CrossRefGoogle Scholar
  10. 10.
    Poulsen HF, Nielsen SF, Lauridsen EM, Schmidt S, Suter RM, Lienert U, Margulies L, Lorentzen T, Jensen DJ (2001) J Appl Crystallogr 34:751CrossRefGoogle Scholar
  11. 11.
    Margulies L, Lorentzen T, Poulsen HF, Leffers T (2002) Acta Mater 50:1771CrossRefGoogle Scholar
  12. 12.
    Oddershede J, Schmidt S, Poulsen HF, Sorensen HO, Wright J, Reimers W (2010) J Appl Crystallogr 43:539CrossRefGoogle Scholar
  13. 13.
    Bernier JV, Barton NR, Lienert U, Miller MP (2011) J Strain Anal Eng Des 46:527CrossRefGoogle Scholar
  14. 14.
    Shade PA, Blank B, Schuren JC, Turner TJ, Kenesei P, Goetze K, Suter RM, Bernier JV, Li SF, Lind J, Lienert U, Almer J (2015) Rev Sci Instrum 86:093902CrossRefGoogle Scholar
  15. 15.
    Lienert U, Brandes MC, Bernier JV, Weiss J, Shastri SD, Mills MJ, Miller MP (2009) Mater Sci Eng A 524:46CrossRefGoogle Scholar
  16. 16.
    Brandes MC, Mills MJ, Williams JC (2010) Metall Mater Trans A 41:3463CrossRefGoogle Scholar
  17. 17.
    Kwon J, Brandes MC, Sudharshan Phani P, Pilchak AP, Gao YF, George EP, Pharr GM, Mills MJ (2013) Acta Mater 61:4743CrossRefGoogle Scholar
  18. 18.
    Pilchak AL (2013) Scripta Mater 68:277CrossRefGoogle Scholar
  19. 19.
    Dawson P, Boyce D, MacEwen S, Rogge R (2000) Metall Mater Trans A 31:1543CrossRefGoogle Scholar
  20. 20.
    Shade PA, Menasche DB, Bernier JV, Kenesei P, Park JS, Suter RM, Schuren JC, Turner TJ (2016) Fiducial marker application method for in situ multimodal x-ray experiments. J Appl Crystallogr 49. DOI: https://doi.org/10.1107/S1600576716001989.CrossRefGoogle Scholar
  21. 21.
    Hosford WF (1993) The mechanics of crystals and textured polycrystals. Oxford University Press, New York–OxfordGoogle Scholar
  22. 22.
    Tromans D (2011) IJRRAS 6(4)Google Scholar
  23. 23.
    Fisher ES, Renkin CJ (1964) Phys Rev 135:482CrossRefGoogle Scholar
  24. 24.
    Frank FC (1991) Orientation Mapping. Metallurgical Transactions 19A:403Google Scholar
  25. 25.
    MJT MATLAB library developed by AFRL, available upon request with lead author @ Todd.Turner.5@us.af.milGoogle Scholar
  26. 26.
    Turner T, Miller M (2007) J Eng Mater Technol 129:367–379CrossRefGoogle Scholar
  27. 27.
    Dawson P, Boyce D, MacEwen S, Rogge R (2001) Mat Sci Eng A A313:123–144CrossRefGoogle Scholar
  28. 28.
    Becker R, Panchanadeeswaran S (1995) Acta Metal Mater 43(7):2701–2719CrossRefGoogle Scholar
  29. 29.
    Bhattacharyya A, El-Danaf E, Kalidindi SR, Doherty RD (2001) Int J Plast 17:861–883CrossRefGoogle Scholar
  30. 30.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D, Bieler T, Raabe D (2010) Acta Mater 58:1152–1211CrossRefGoogle Scholar
  31. 31.
    Zhao Z, Ramesh M, Raabe D, Cuitino A, Radovitzky R (2008) Int J Plast 24:2278–2297CrossRefGoogle Scholar
  32. 32.
    Cedat D, Fandeur O, Rey C, Raabe D (2012) Acta Mater 60:1623–1632CrossRefGoogle Scholar
  33. 33.
    Demir E, Raabe D, Zaafarani N, Zaefferer S (2009) Acta Mater 57:559–569CrossRefGoogle Scholar
  34. 34.
    Lebensohn RA, Liu Y, Ponte Castaneda P (2004) Acta Mater 52:5347–5361CrossRefGoogle Scholar

Copyright information

© Turner et al. 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Todd J. Turner
    • 1
    Email author
  • Paul A. Shade
    • 1
  • Joel V. Bernier
    • 2
  • Shiu Fai Li
    • 2
  • Jay C. Schuren
    • 1
  • Jonathan Lind
    • 2
    • 3
  • Ulrich Lienert
    • 4
  • Peter Kenesei
    • 5
  • Robert M. Suter
    • 3
  • Basil Blank
    • 6
  • Jonathan Almer
    • 5
  1. 1.Materials and Manufacturing DirectorateAir Force Research LaboratoryWright-Patterson AFBUSA
  2. 2.Engineering DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Carnegie Mellon UniversityPittsburghUSA
  4. 4.Deutsches Elektronen-SynchrotronHamburgGermany
  5. 5.Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  6. 6.PulseRayBeaver DamsUSA

Personalised recommendations