OpenCalphad - a free thermodynamic software

  • Bo SundmanEmail author
  • Ursula R Kattner
  • Mauro Palumbo
  • Suzana G Fries


Thermodynamic data are essential for the understanding, developing, and processing of materials. The CALPHAD (Calculation of Phase Diagrams) technique has made it possible to calculate properties of multicomponent systems using databases of thermodynamic descriptions with models that were assessed from experimental data. A large variety of data, such as phase diagram and solubility data, including consistent thermodynamic values of chemical potentials, enthalpies, entropies, thermal expansions, heats of transformations, and heat capacities, can be obtained from these databases. CALPHAD calculations can be carried out as stand-alone calculations or can be carried out coupled with simulation codes using the result from these calculations as input. A number of CALPHAD software are available for the calculation of properties of multicomponent systems, and the majority are commercial products. The OpenCalphad (OC) software, discussed here, has a simple programming interface to facilitate such integration in application software. This is important for coupling validated thermodynamic as well as kinetic data in such simulations for obtaining realistic results. At present, no other high quality open source software is available for calculations of multicomponent systems using CALPHAD-type models, and it is the goal of the OC source code to fill this gap. The OC software is distributed under a GNU license. The availability of the source code can greatly benefit scientists in academia as well as in industry in the development of new models and assessment of model parameters from both experimental data and data from first principles calculations.


Computational thermodynamics CALPHAD Software Multicomponent modeling Equilibrium calculations Simulations GNU license 



Funding by the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), which is supported by ThyssenKrupp AG, Bayer MaterialScience AG, Salzgitter Mannesmann Forschung GmbH, Robert Bosch GmbH, Benteler Stahl/Rohr GmbH, Bayer Technology Services GmbH, and the state of North-RhineWestphalia as well as the European Commission in the framework of the European Regional Development Fund (ERDF). One of the developers, BS, is grateful for a Humboldt senior research award.

NIST does not endorse any commercial products, and use of these products does not imply endorsement by NIST.


  1. 1.
    National Science and Technology Council (2011) Materials genome initiative for global competitiveness, Office of Science and Technology Policy, Washington, DC.Google Scholar
  2. 2.
    National Research Council, Committee on Integrated Computational Materials Engineering (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security, National Research Council, Committee on Integrated Computational Materials Engineering, Washington, DC.Google Scholar
  3. 3.
    Olson GB (2014) Preface to the viewpoint set on: The Materials Genome. Scripta Mater 70: 1–2.CrossRefGoogle Scholar
  4. 4.
    Kattner UR, Eriksson G, Hahn I, Schmid-Fetzer R, Sundman B, Swamy V, Kussmaul A, Spencer PJ, Anderson TJ, Chart TG, Costa e Silva A, Jansson B, Lee B-J, Schalin M (2000) Use of thermodynamic software in process modelling and new applications of thermodynamic calculations. Calphad 24: 55–94.CrossRefGoogle Scholar
  5. 5.
    Olson G (2013) Genomic materials design: The ferrous frontier. Acta Mater 61: 771–781.CrossRefGoogle Scholar
  6. 6.
    Hickel T, Kattner UR, Fries SG (2014) Computational thermodynamics: Recent developments and future potential and prospects. Phys Status Solidi B 251: 9–13.CrossRefGoogle Scholar
  7. 7.
    Olson GB (1997) Computational design of hierarchically structured materials. Science 277: 1237–1242.CrossRefGoogle Scholar
  8. 8.
    Reed RC, Tao T, Warken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57: 5898–5913.CrossRefGoogle Scholar
  9. 9.
    Xu W, Rivera-Díaz-del-Castillo PEJ, van der Zwaag S (2008) Genetic alloy design based on thermodynamics and kinetics. Phil Mag 88: 1825–1833.CrossRefGoogle Scholar
  10. 10.
    Gheribi AE, Robelin C, Le Digabel S, Audet C, Pelton AD (2011) Calculating all local minima on liquidus surfaces using the FactSage software and databases and the mash adaptive direct search algorithm. J Chem Thermodyn 43: 1323–1330.CrossRefGoogle Scholar
  11. 11.
    Tancret F (2013) Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys. Modelling Simul Mater Sci Eng 21: 045013.CrossRefGoogle Scholar
  12. 12.
    Saunders N, Kucherenko S, Li X, Miodownik AP, Schille J-P (2001) A new computer program for predicting materials properties. J Phase Equilib 22: 463–469.CrossRefGoogle Scholar
  13. 13.
    JMatPro Practical Software for Materials Properties. Accessed 19 December 2014.
  14. 14.
    Shobu K (2009) CaTCalc: New thermodynamic equilibrium calculation software. Calphad 33: 279–287.CrossRefGoogle Scholar
  15. 15.
    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton AD, Robelin C, Petersen S (2009) FactSage thermochemical software and databases - recent developments. Calphad 33: 295–311.CrossRefGoogle Scholar
  16. 16.
    MatCalc The Materials Calculator. Accessed 19 December 2014.
  17. 17.
    Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA - thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26: 229–271.CrossRefGoogle Scholar
  18. 18.
    Cao W, Chen S-L, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) The Pandat software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33: 328–342.CrossRefGoogle Scholar
  19. 19.
    Andersson J-O, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26: 273–312.CrossRefGoogle Scholar
  20. 20.
    Shi P, Engström A, Sundman B, Ågren J (2011) Thermodynamic calculations and kinetic simulations of some advanced materials. Mater Sci Forum675-677: 961–974.CrossRefGoogle Scholar
  21. 21.
    Liu Z-K, Chen L-Q, Raghavan P, Du Q, Sofo JO, Langer SA, Wolverton C (2004) An integrated framework for multi-scale materials simulations and design. J Comput-Aided Mater Des 11: 183–199.CrossRefGoogle Scholar
  22. 22.
    Liu Z-K, Chen L-Q, Krishna R (2006) Linking length scales via materials informatics. JOM 58(11): 42–50.CrossRefGoogle Scholar
  23. 23.
    Grafe U, Böttger B, Tiaden J, Fries SG (2000) Coupling of multicomponent thermodynamic databases to a phase field model: application to solidification and solid state transformations of superalloys. Scripta Mater 42: 1179–1186.CrossRefGoogle Scholar
  24. 24.
    Schneider MC, Gu JP, Beckermann C, Boettinger WJ, Kattner UR (1997) Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall Mater Trans A28A: 1517–1531.CrossRefGoogle Scholar
  25. 25.
    Banerjee DK, Samonds MT, Kattner UR, Boettinger WJ (1997) Coupling of phase diagram calculations for muliticomponent alloys with solidification micromodels is casting simulation software. In: Beech J Jones H (eds)Solidification Processing 1997: Proceedings of the 4th Decennial International Conference on Solidification Processing, 354–357, Department of Engineering Materials, University of Sheffield, Sheffield.Google Scholar
  26. 26.
    Warnken N, Ma D, Dreverman A, Reed RC, Fries SG, Steinbach I (1997) Phase-field modeling of as-cast microstructure evolution in nickel-based superalloys. Acta Mater 57: 5862–5875.CrossRefGoogle Scholar
  27. 27.
    10 Reasons Open Source Is Good for Business. Accessed 19 December 2014.
  28. 28.
    Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482: 485–488.CrossRefGoogle Scholar
  29. 29.
    GEM Software (GEMS) Home. Accessed 19 December 2014.
  30. 30.
    MELTS Home Page. Accessed 8 December 2014.
  31. 31.
    Cool T, Bartol A, Kasenga M, Modi K, García RE (2010) Gibbs: Phase equilibria and symbolic computation of thermodynamic properties. Calphad 34: 393–404.CrossRefGoogle Scholar
  32. 32.
    Snider J, Griva I, Sun X, Emelianenko M (2015) Set based framework for Gibbs energy minimization. Calphad 48: 18–26.CrossRefGoogle Scholar
  33. 33.
    Gonze X, Beuken J-M, Caracas R, Detraux F, Fuchs M, Rignanese G-M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J-Y, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25: 478–489.CrossRefGoogle Scholar
  34. 34.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, et al (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21: 395502.Google Scholar
  35. 35.
    OpenPhase. Accessed 19 December 2014.
  36. 36.
    Guyer JE, Wheeler D, Warren JA (2009) FiPy: partial differential equations with Python. Comput Sci Eng 11(3): 6–15.CrossRefGoogle Scholar
  37. 37.
    Langer SA, Fuller Jr ER, Carter WC (2001) OOF: an image-based finite-element analysis of materials microstructures. Comput Sci Eng 3(3): 15–23.CrossRefGoogle Scholar
  38. 38.
    Eriksson G, Sippola H, Sundman B (1994) A proposal for a general thermodynamic calculation interface. In: Jokilaakso A (ed)1st Colloquium on Process Simulation, 67–103.. Helsinki University of Technology, Helsinki.Google Scholar
  39. 39.
    TQ-Interface Programmer’s Guide. Accessed 19 December 2014.
  40. 40.
    Steinbach I, Böttger B, Eike J, Warnken N, Fries SG (2007) CALPHAD and phase-field modeling: a successful liaison. J Phase Equilib Diffus 28: 101–106.CrossRefGoogle Scholar
  41. 41.
    Kitashima T (2008) Coupling of the phase-field and CALPHAD methods for predicting multicomponent, solid-state phase transformations. Phil Mag 88: 1615–1637.CrossRefGoogle Scholar
  42. 42.
    Xiong H, Huang Z, Wu Z, Conway PP (2011) A generalized computational interface for combined thermodynamic and kinetic modeling. Calphad 35: 391–395.CrossRefGoogle Scholar
  43. 43.
    Lukas HL, Fries SG, Sundman B (2007) Computational Thermodynamics, the Calphad Method. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  44. 44.
    Sundman B (1981) Application of computer techniques on the treatment of the thermodynamics of alloys. PhD thesis, KTH Stockholm, Sweden.Google Scholar
  45. 45.
    Hillert M (1981) Some viewpoints on the use of a computer for calculating phase diagrams. Physica103B: 31–40.Google Scholar
  46. 46.
    Jansson B (1984) Computer operated methods for equilibrium calculations and evaluation of thermochemical model parameters, PhD thesis, KTH Stockholm, Sweden.Google Scholar
  47. 47.
    Lukas HL, Weiss J, Henig E-T (1982) Strategies for the calculation of phase diagrams. Calphad 6: 229–251.CrossRefGoogle Scholar
  48. 48.
    Chen S-L, Chou K-C, Chang YA (1993) On a new strategy for phase diagram calculation. 1. basic principles. Calphad 17: 237–250.CrossRefGoogle Scholar
  49. 49.
    Chen S-L, Chou K-C, Chang YA (1993) On a new strategy for phase diagram calculation. 2. binary systems. Calphad 17: 287–302.CrossRefGoogle Scholar
  50. 50.
    Thermo-Calc Database Manager’s Guide. Accessed 19 December 2014.
  51. 51.
    NIST Repositories., Accessed 19 December 2014.
  52. 52.
    Bratberg J, Mao H, Kjellqvist L, Engström A, Mason P, Chen Q (2012) The development and validation of a new thermodynamic database for Ni-based alloys. In: Huron ES, Reed RC, Hardy MC, Mills MJ, Montero RE, Portella PD, Telesman J (eds)Superalloys 2012: 12 Th International Symposium on Superalloys, 803–812.. TMS (The Minerals, Metals & Materials Society), Warrendale, PA.CrossRefGoogle Scholar
  53. 53.
    Palumbo M, Fries SG, Hammerschmidt T, Abe T, Crivello J-C, Al Hasan Breidi A, Joubert J-M, Drautz R (2014) First-principles based phase diagrams and thermodynamic properties of tcp phases in Re-X systems (X = Ta, V, W). Comput Mater Sci 81: 433–445.CrossRefGoogle Scholar
  54. 54.
    Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39: 1–24.CrossRefGoogle Scholar
  55. 55.
    Campbell CE, Kattner UR, Liu Z-K (2014) The development of phase-based property data using the CALPHAD method and infrastructure needs. Integr Mater Manuf Innov 3: 12.CrossRefGoogle Scholar
  56. 56.
    Palumbo M, Burton B, Costa e Silva A, Fultz B, Grabowski B, Grimvall G, Hallstedt B, Hellman O, Lindahl B, Schneider A, Turchi PEA, Xiong W (2014) Thermodynamic modelling of crystalline unary phases. Phys Status Solidi B 251: 14–32.CrossRefGoogle Scholar
  57. 57.
    Becker CA, Ågren J, Baricco M, Chen Q, Decterov SA, Kattner UR, Perepezko JH, Pottlacher GR, Selleby M (2014) Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics. Phys Status Solidi B 251: 33–52.CrossRefGoogle Scholar
  58. 58.
    Körmann F, Al Hasan Breidi A, Dudarev SL, Dupin N, Ghosh G, Hickel T, Korzhavyi P, Muñoz JA, Ohnuma I (2014) Lambda transitions in materials science: recent advances in CALPHAD and first-principles modelling. Phys Status Solidi B 251: 53–80.CrossRefGoogle Scholar
  59. 59.
    Hammerschmidt T, Abrikosov IA, Alfè D, Fries SG, Höglund L, Jacobs MHG, Koßmann J, Lu X-G, Paul G (2014) Including the effects of pressure and stress in thermodynamic functions. Phys Status Solidi B 251: 81–96.CrossRefGoogle Scholar
  60. 60.
    Rogal J, Divinski SV, Finnis MW, Glensk A, Neugebauer J, Perepezko JH, Schuwalow S, Sluiter MHF, Sundman B (2014) Perspectives on point defect thermodynamics. Phys. Status Solidi B 251: 96–129.CrossRefGoogle Scholar
  61. 61.
    OpenCalphad. Accessed 19 December 2014.
  62. 62.
    Hillert M, Jansson B, Sundman B, Ågren J (1985) A two-sublattice model for molten solutions with different tendency for ionization. Metall Trans A16A: 261–266.CrossRefGoogle Scholar
  63. 63.
    Hillert M, Selleby M, Sundman B (2009) An attempt to correct the quasichemical model. Acta Mater 57: 5237–5244.CrossRefGoogle Scholar

Copyright information

© Sundman et al.; licensee Springer. 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Bo Sundman
    • 1
    Email author
  • Ursula R Kattner
    • 2
  • Mauro Palumbo
    • 3
  • Suzana G Fries
    • 3
  1. 1.INSTNCEA SaclaySaclayFrance
  2. 2.Materials Science and Engineering DivisionInstitute of Standards and TechnologyGaithersburgUSA
  3. 3.ICAMSRuhr University BochumBochumGermany

Personalised recommendations