Investment casting of nozzle guide vanes from nickel-based superalloys: part I – thermal calibration and porosity prediction

  • Agustín Jose Torroba
  • Ole Koeser
  • Loic Calba
  • Laura Maestro
  • Efrain Carreño-Morelli
  • Mehdi Rahimian
  • Srdjan Milenkovic
  • Ilchat Sabirov
  • Javier LLorcaEmail author
Research article


Investment casting is the only commercially used technique for fabrication of nozzle guide vanes (NGVs), which are one of the most important structural parts of gas turbines. Manufacturing of NGVs has always been a challenging task due to their complex shape. This work focuses on development of a simulation tool for investment casting of a new generation NGV from MAR-M247 Ni-based superalloy. A thermal model is developed to predict thermal history during investment casting. Experimental casting trials of the NGV are carried out and the thermal history of metal, mold, and insulation wrap is recorded. Inverse modeling of the casting trials is used to define accurately some thermophysical parameters and boundary conditions of the thermal model. Based on the validated thermal model, another model is developed to predict porosity in the as-cast NGVs. The porosity predictions are in good agreement with the experimental results in the as-cast NGVs. The advantages and shortcomings of the developed modeling tool are discussed.


Ni-based superalloys Investment casting Nozzle guide vanes Thermal model Thermal history Porosity 



This investigation was carried out in frame of the VANCAST project (EU, FP7, ERA-NET MATERA+). SM and IS acknowledge gratefully the Spanish Ministry of Economy and Competitiveness for financial support through the Ramon y Cajal fellowships. Prof. A. Zryd (Maxwell Technologies SA) and Dr. A. Faes (CSEM SA) are greatly acknowledged for the inverse simulations of experimental casting trials of easy geometry parts as those results constituted the seed for experimental work which had led to this manuscript.

Supplementary material

40192_2014_25_MOESM1_ESM.gif (170 kb)
Authors’ original file for figure 1
40192_2014_25_MOESM2_ESM.gif (36 kb)
Authors’ original file for figure 2
40192_2014_25_MOESM3_ESM.gif (34 kb)
Authors’ original file for figure 3
40192_2014_25_MOESM4_ESM.gif (26 kb)
Authors’ original file for figure 4
40192_2014_25_MOESM5_ESM.gif (21 kb)
Authors’ original file for figure 5
40192_2014_25_MOESM6_ESM.gif (15 kb)
Authors’ original file for figure 6
40192_2014_25_MOESM7_ESM.gif (75 kb)
Authors’ original file for figure 7
40192_2014_25_MOESM8_ESM.gif (94 kb)
Authors’ original file for figure 8
40192_2014_25_MOESM9_ESM.gif (25 kb)
Authors’ original file for figure 9
40192_2014_25_MOESM10_ESM.gif (173 kb)
Authors’ original file for figure 10
40192_2014_25_MOESM11_ESM.gif (32 kb)
Authors’ original file for figure 11
40192_2014_25_MOESM12_ESM.gif (112 kb)
Authors’ original file for figure 12
40192_2014_25_MOESM13_ESM.docx (11 kb)
Authors’ original file for figure 13
40192_2014_25_MOESM14_ESM.docx (14 kb)
Authors’ original file for figure 14
40192_2014_25_MOESM15_ESM.docx (11 kb)
Authors’ original file for figure 15
40192_2014_25_MOESM16_ESM.docx (11 kb)
Authors’ original file for figure 16
40192_2014_25_MOESM17_ESM.docx (11 kb)
Authors’ original file for figure 17


  1. 1.
    Razak AMY: Industrial gas turbines: performance and operability. Woodhead Publishing Limited, Cambridge, UK; 2007.Google Scholar
  2. 2.
    Reed RC: The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge, UK; 2006.CrossRefGoogle Scholar
  3. 3.
    Pattnaik S, Karunakar DB, Jha PK: Developments in investment casting process—a review. J Mater Proc Tech 2012, 212: 2332–2348. doi:10.1016/j.jmatprotec.2012.06.003CrossRefGoogle Scholar
  4. 4.
    Anglada E, Meléndez A, Maestro L, Domiguez I: Adjustment of numerical simulation model to the investment casting process. Proc Eng 2013, 63: 75–83. doi:10.1016/j.proeng.2013.08.272CrossRefGoogle Scholar
  5. 5.
    Rafique MMA, Iqbal J: Modeling and simulation of heat transfer phenomena during investment casting. Int J Heat Mass Transf 2009, 52: 2132–2139. doi:10.1016/j.ijheatmasstransfer.2008.11.007CrossRefGoogle Scholar
  6. 6.
    Stefanescu DM: Science and Engineering of Casting Solidification. 2nd edition. Springer Science + Business Media, New York, NY, USA; 2009.Google Scholar
  7. 7.
    Piwonka TS, Flemings MC: Pore formation in solidification. Trans AIME 1966, 236(8):1157–1165.Google Scholar
  8. 8.
    Pellini WS: Factors which determine riser adequacy and feeding range. AFS Transactions 1953, 61: 61–80.Google Scholar
  9. 9.
    Niyama E, Uchida T, Morikawa M, Saito S: Predicting shrinkage in large steel castings from temperature gradient calculations. AFS Int Cast Met J 1981, 6(2):16–22.Google Scholar
  10. 10.
    Carlson KD, Beckermann C: Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metall Mater Trans A 2009, 40: 163–175. doi:10.1007/s11661–008–9715-yCrossRefGoogle Scholar
  11. 11.
    Kubo K, Pehlke RD: Mathematical modeling of porosity formation in solidification. Metall Mater Trans B 1985, 16: 359–366. doi: 10.1007/BF02679728 doi: 10.1007/BF02679728 10.1007/BF02679728CrossRefGoogle Scholar
  12. 12.
    Lee PD, Hunt JD: Hydrogen porosity in directionally solidified aluminium copper alloys: a mathematical model. Acta Mater 2001, 49: 1383–1398. doi:10.1016/S1359–6454(01)00043-XCrossRefGoogle Scholar
  13. 13.
    Lee PD, Chirazi A, Atwood RC, Wang W: Multiscale modeling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy. Mater Sci Eng A 2004, 365: 57–65. doi:10.1016/j.msea.2003.09.007 doi:10.1016/j.msea.2003.09.007 10.1016/j.msea.2003.09.007CrossRefGoogle Scholar
  14. 14.
    Carlson KD, Lin Z, Beckermann C: Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall Mater Trans B 2007, 38: 541–555. doi:10.1007/s11663–006–9013–2CrossRefGoogle Scholar
  15. 15.
    Pequet C, Rappaz M, Gremaud M: Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: applications to aluminum alloys. Metall Mater Trans A 2002, 33: 2095–2106. doi:10.1007/s11661–002–0041–5CrossRefGoogle Scholar
  16. 16.
    Couturier G, Rappaz M: Effect of volatile elements on porosity formation in solidifying alloys. Model Simul Mater Sci Eng 2006, 14(2):253–271. doi:10.1088/0965–0393/14/2/009CrossRefGoogle Scholar
  17. 17.
    Couturier G, Rappaz M: Modeling of porosity formation in multicomponent alloys in the presence of several dissolved gases and volatile solute elements. TMS Annual Meeting, San Antonio, TX, USA; 2006.Google Scholar
  18. 18.
    Stefanescu DM: Computer simulation of shrinkage related defects in metal castings—a review. Inter J Cast Metal Res 2005, 18(3):129–143. 10.1179/136404605225023018CrossRefGoogle Scholar
  19. 19.
    Lee PD, Chirazi A, See D: Modeling microporosity in aluminum–silicon alloys: a review. J Light Metals 2001, 1: 15–30. doi:10.1016/S1471–5317(00)00003–1CrossRefGoogle Scholar
  20. 20.
    Overfelt RA, Sahai V, Ko YK, Berry JT: Porosity in cast equiaxed alloy 718. In Proceedings of the TMS Meeting Edited by: Loria EA. 1994, 189.Google Scholar
  21. 21.
    Monastyrskiy VP: Modeling of porosity formation in Ni-based superalloys. In Proceedings of the 8th Pacific Rim International Conference on Modeling of Casting and Solidification Process Edited by: Choi JK. 2010, 89.Google Scholar
  22. 22.
    Kang M, Gao H, Wang J, Ling L, Sun B: Prediction of microporosity in complex thin-wall castings with the dimensionless Niyama criterion. Materials 2013, 6: 1789–1802. 10.3390/ma6051789CrossRefGoogle Scholar
  23. 23.
    Calba L, Lefebvre D: Modeling the investment casting process. ESI-GROUP Resource Center, Paris; 2008.Google Scholar
  24. 24.
    Harris K, Erickson GL, Schwer RE: MAR-M247 derivations—CM247 LC DS alloy, CMSX single crystal alloys, properties and performance. In Proceedings of the 5th International Symposium on Superalloys, TMS Edited by: Gell M, Kortovich CS, Bricknell RH, Kent WB, Radvich JF. 1984, 221.Google Scholar
  25. 25.
    Handbook ASM: Metals Process Simulation. ASM International, Ohio, USA; 2010.Google Scholar
  26. 26.
    Version 6.1. ESI software, France. 2007.Google Scholar
  27. 27.
    Rappaz M, Bellet M, Deville M, Snyder R: Numerical modeling in materials science and engineering. Springer-Verlag, Berlin, Germany; 2002.Google Scholar
  28. 28.
    Dantzig JA, Rappaz M: Solidification. EPFL-Press, Lausanne, Switzerland; 2009.CrossRefGoogle Scholar
  29. 29.
    Handbook ASM: Casting. ASM International, Ohio, USA; 2008.Google Scholar
  30. 30.
    O’Mahoney D, Browne DJ: Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process. Exper Thermal Fluid Sci 2000, 22: 111–122. doi:10.1016/S0894–1777(00)00014–5CrossRefGoogle Scholar
  31. 31.
    Konrad CH, Brunner M, Kyrgyzbaev K, Völkl R, Glatzel U: Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings. J Mater Proc Tech 2011, 211: 181–186. doi:10.1016/j.jmatprotec.2010.08.031CrossRefGoogle Scholar
  32. 32.
    Santos CA, Quaresma JMV, Garcia A: Determination of transient interfacial heat transfer coefficients in chill mold castings. J Alloys Compd 2001, 319: 174–186. doi: 10.1016/S0925–8388(01)00904–5CrossRefGoogle Scholar
  33. 33.
    Dong Y, Bu K, Dou Y, Zhang D: Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades. J Mater Proc Tech 2011, 211: 2123–2131. doi:10.1016/j.jmatprotec.2011.07.012CrossRefGoogle Scholar
  34. 34.
    Sahai V, Overfelt RA: Contact conductance simulation for alloy 718 investment casting of various geometries. Tran Amer F 1995, 103: 627–632.Google Scholar
  35. 35.
    Yuang XL, Lee PD, Brooks RF, Wunderlich R: The sensitivity of investment casting simulations to the accuracy of thermophysical properties values. Proceedings of the International Symposium on Superalloys, TMS 2004, 951.Google Scholar

Copyright information

© Torroba et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Authors and Affiliations

  • Agustín Jose Torroba
    • 1
  • Ole Koeser
    • 2
  • Loic Calba
    • 2
  • Laura Maestro
    • 3
  • Efrain Carreño-Morelli
    • 1
  • Mehdi Rahimian
    • 4
  • Srdjan Milenkovic
    • 4
  • Ilchat Sabirov
    • 4
  • Javier LLorca
    • 4
    • 5
    Email author
  1. 1.University of Applied Sciences and Arts Western SwitzerlandSionSwitzerland
  2. 2.CALCOM-ESILausanneSwitzerland
  3. 3.Precicast BilbaoBilbaoSpain
  4. 4.IMDEA Materials InstituteGetafeSpain
  5. 5.Department of Materials SciencePolytechnic University of MadridMadridSpain

Personalised recommendations