Advertisement

Some generalized Volterra–Fredholm type dynamical integral inequalities in two independent variables on time scale pairs

  • Haidong LiuEmail author
  • Chuancun Yin
Open Access
Research
  • 112 Downloads

Abstract

In this paper, we study some new Volterra–Fredholm type dynamical integral inequalities in two independent variables on time scale pairs, which provide explicit bounds on unknown functions. These inequalities generalize and extend some known inequalities and can be used as effective tools in the qualitative theory of certain classes of partial dynamic equations on time scales. Finally, an example is provided to illustrate the usefulness of our result.

Keywords

Time scale Dynamical integral inequality Volterra–Fredholm type Two independent variables 

1 Introduction

Beginning in 1988, a seminal paper by Stefan Hilger [1] initiated a theory capable of containing both continuous and discrete analysis in a consistent way. Since then, the theory has attracted wide attention. As one of the most fundamental objects, dynamic equations on time scales has been extensively investigated in recent years, we refer the reader to the books [2, 3] and to the papers [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and the references therein.

As we all known, inequalities are a powerful tool in the study of qualitative properties of solutions of differential, integral, and difference equations, and so on. During the last few years, a lot of dynamic inequalities have been extended by many authors. See [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. For example, Anderson [28] considered the following nonlinear integral inequality in two independent variables on time scale pairs:
$$\begin{aligned} u^{p}(x,y)\leq a(x,y)+b(x,y) \int ^{x}_{x_{0}} \int _{y}^{\infty }\bigl[c(s,t)u ^{q}(s,t)+d(s,t)u^{r}(s,t)+e(s,t) \bigr]\widetilde{\nabla } t\Delta s. \end{aligned}$$
Ferreira and Torres [36] studied the following nonlinear integral inequality in two independent variables on time scale pairs:
$$\begin{aligned} u^{p}(x,y)\leq a(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}c(x,y,s,t)u ^{q}(s,t) \Delta t\Delta s. \end{aligned}$$
Volterra–Fredholm-type integral inequality is an important integral inequality, which contains a definite integral of the unknown function, and has been given much attention by many authors, see [38, 39, 40, 41, 42, 43, 44, 45, 46] and the references therein. For example, Feng et al. [38] studied the following Volterra–Fredholm-type finite difference inequality:
$$\begin{aligned} u^{p}(m,n) \leq & a(m,n) \\ &{}+\sum_{s=m_{0}}^{m-1}\sum _{t=n_{0}}^{n-1} \Biggl[c(s,t,m,n)u^{q}(s,t)+ \sum_{\xi =m_{0}}^{s}\sum _{\eta =n_{0}}^{t}d(\xi ,\eta ,m,n)u^{r}( \xi ,\eta ) \Biggr] \\ &{}+\sum_{s=m_{0}}^{M-1}\sum _{t=n_{0}}^{N-1} \Biggl[f(s,t,m,n)u^{l}(s,t)+ \sum_{\xi =m_{0}}^{s}\sum _{\eta =n_{0}}^{t}g(\xi ,\eta ,m,n)u^{k}( \xi ,\eta ) \Biggr]. \end{aligned}$$
Meng and Gu [46] considered the following nonlinear Volterra–Fredholm-type dynamic integral inequality on time scales:
$$\begin{aligned} u(x) \leq & k+ \int ^{x}_{x_{0}}f_{1}(s)w\bigl(u(s) \bigr)\Delta s+ \int ^{x}_{x_{0}}f _{2}(s) \int ^{s}_{x_{0}}f_{3}(\tau )w\bigl(u( \tau )\bigr)\Delta \tau \Delta s \\ &{}+ \int ^{\alpha }_{x_{0}}f_{1}(s)w\bigl(u(s) \bigr)\Delta s+ \int ^{\alpha }_{x _{0}}f_{2}(s) \int ^{s}_{x_{0}}f_{3}(\tau )w\bigl(u( \tau )\bigr)\Delta \tau \Delta s. \end{aligned}$$

But to our knowledge, Volterra–Fredholm-type dynamic integral inequalities in two independent variables on time scale pairs have been paid little attention in the literature so far. Motivated by the work done in [36, 38, 46], in this paper, we establish some generalized Volterra–Fredholm-type dynamic integral inequalities in two independent variables on time scale pairs, which not only extend some existing results in the literature, unify some known continuous and discrete inequalities, but also may be applied to the analysis of certain classes of partial dynamic equations on time scales.

2 Preliminaries

In what follows, we assume that \(\mathbf{T}_{1}\) and \(\mathbf{T}_{2}\) are two time scales with at least two points, \(x_{0}, \alpha\in\mathbf{T}_{1}\), \(y_{0}, \beta\in\widetilde{\mathbf{T}}_{2}\), \(\alpha>x_{0}\), \(\beta>y_{0}\), \(\widetilde{\mathbf{T}}_{1}=[x_{0},\infty)\cap\mathbf{T}_{1}\), \(\widetilde{\mathbf{T}}_{2}=[y_{0},\infty)\cap\mathbf{T}_{2}\), \(I_{1}=[x_{0},\alpha]\cap\mathbf{T}_{1}\), \(I_{2}=[y_{0},\beta]\cap\mathbf{T}_{2}\), \(D=\{(x,y,s,t)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}\times \widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}: x_{0}\leq s \leq x, y_{0}\leq t \leq y\}\), \(E=\{(x,y,s,t)\in {\widetilde{T}}_{1}\times\widetilde{\mathbf{T}}_{2} \times I_{1}\times I_{2}\}\). \(\mathcal{R}\) denotes the set of all regressive and rd-continuous functions, \(\mathcal{R}^{+}=\{P\in\mathcal{R}, 1+\mu(t)P(t)>0, t\in\mathbf{T}\}\). R denotes the set of real numbers, \(\mathbf{R}_{+}=[0, \infty)\), while Z denotes the set of integers.

Lemma 2.1

([33])

Let\(m>0\), \(n>0\), \(p>0\), \(\alpha>0\)and\(\beta>0\)be given, then for each\(x\geq0\),
$$ mx^{\alpha}-nx^{\beta}\leq \frac{m(\beta-\alpha)}{\beta-p} \biggl(\frac{(\beta-p)n}{(\alpha-p)m}\biggr)^{(\alpha-p)/(\alpha-\beta)}x^{p} $$
holds for the cases when\(0< p<\alpha<\beta\)or\(0<\beta<\alpha<p\).

Lemma 2.2

([47])

Assume that\(x\geq0\), \(p\geq q\geq0\), and\(p\neq0\), then for any\(K>0\),
$$ x^{q/p}\leq\frac{q}{p}K^{(q-p)/p}x+\frac{p-q}{p}K^{q/p}. $$

Lemma 2.3

([2, Theorem 6.1])

Supposeyandfare rd-continuous functions and\(p\in\mathcal{R}^{+}\). Then
$$ y^{\Delta}(t)\leq p(t)y(t)+f(t),\quad \textit{for all } t \in \mathbf{T} $$
implies
$$ y(t)\leq y(t_{0})e_{p}(t,t_{0})+\int_{t_{0}}^{t}e_{p}\bigl(t,\sigma(\tau)\bigr)f(\tau)\Delta\tau, \quad \textit{for all } t \in \mathbf{T}. $$

Lemma 2.4

([36])

Let\(u, a, f\in C(\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, \mathbf{R}_{+})\), withaandfnondecreasing in each of the variables and\(g\in C(D, \mathbf{R}_{+})\)be nondecreasing inxandy. If
$$ u(x,y)\leq a(x,y)+f(x,y)\int^{x}_{x_{0}}\int^{y}_{y_{0}}g(x,y,s,t)u(s,t)\Delta t\Delta s,\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
then
$$ u(x,y)\leq a(x,y)e_{p(x,y,\cdot)}(x,x_{0}),\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
where\(p(x,y,s)=\int^{y}_{y_{0}}f(x,y)g(x,y,s,t)\Delta t\).

Lemma 2.5

Let\(u, c, d\in C(\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, \mathbf{R}_{+})\)and\(k\geq0\)be a constant. If
$$ u(x,y)\leq k+\int^{x}_{x_{0}}\int^{y}_{y_{0}}\biggl[c(s,t)u\bigl(s,\sigma(t)\bigr)+d(s,t)u(s,t)\biggr]\Delta t\Delta s, \quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
(1)
then
$$ u(x,y)\leq ke_{p(\cdot,y)}(x,x_{0}), \quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
(2)
where
$$\begin{aligned}& p(x,y) = \int^{y}_{y_{0}}h(x,t)\Delta t, \quad \textit{and} \end{aligned}$$
(3)
$$\begin{aligned}& h(x,y) = c(x,y)+d(x,y). \end{aligned}$$
(4)

Proof

For an arbitrary \(\varepsilon>0\), denote
$$ z(x,y)=k+\varepsilon+\int^{x}_{x_{0}}\int^{y}_{y_{0}}\biggl[c(s,t)u\bigl(s,\sigma(t)\bigr)+d(s,t)u(s,t)\biggr]\Delta t\Delta s. $$
(5)
From the assumptions, we have z is positive and nondecreasing in each of the variables. By (1) and (5), we have that
$$ u(x,y)\leq z(x,y), \quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}. $$
Delta differentiating with respect to the first variable and then with respect to the second, we obtain
$$\begin{aligned} \frac{\partial}{\Delta_{2} y}\biggl(\frac{\partial z(x,y)}{\Delta_{1} x}\biggr) =&c(x,y)u\bigl(x,\sigma(y)\bigr)+d(x,y)u(x,y) \\ \leq&c(x,y)z\bigl(x,\sigma(y)\bigr)+d(x,y)z(x,y),\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}. \end{aligned}$$
(6)
From (6), we get
$$\begin{aligned} \frac{z(x,y)\frac{\partial}{\Delta_{2} y}(\frac{\Delta z(x,y)}{\Delta_{1} x})}{z(x,y)z(x,\sigma(y))} \leq&\biggl[c(x,y)+d(x,y)\frac{z(x,y)}{z(x,\sigma(y))}\biggr] \\ \leq&\biggl[c(x,y)+d(x,y)\biggr] \\ =&h(x,y), \end{aligned}$$
where \(h(x,y)\) is defined as in (4). Hence,
$$ \frac{z(x,y)\frac{\partial}{\Delta_{2} y}(\frac{\partial z(x,y)}{\Delta_{1} x})}{z(x,y)z(x,\sigma(y))} -\frac{\frac{\partial z(x,y)}{\Delta_{1} x}\frac{\partial z(x,y)}{\Delta_{2} y}}{z(x,y)z(x,\sigma(y))}\leq h(x,y), $$
(7)
i.e.,
$$ \frac{\partial}{\Delta_{2} y}\biggl(\frac{\frac{\partial z(x,y)}{\Delta_{1} x}}{z(x,y)}\biggr) \leq h(x,y). $$
Delta integrating with respect to the second variable from \(y_{0}\) to y and noting that \(\frac{\partial z(x,y)}{\Delta_{1} x}|_{(x,y_{0})}=0\), we have
$$ \frac{\frac{\partial z(x,y)}{\Delta_{1} x}}{z(x,y)} \leq \int^{y}_{y_{0}}h(x,t)\Delta t, $$
that is,
$$ \frac{\partial z(x,y)}{\Delta_{1} x} \leq z(x,y)\int^{y}_{y_{0}}h(x,t)\Delta t. $$
(8)
By (3) and (8) we get
$$ \frac{\partial z(x,y)}{\Delta_{1} x} \leq p(x,y)z(x,y). $$
From Lemma 2.3 and \(z(x_{0},y)=k+\varepsilon\), we obtain
$$ z(x,y) \leq (k+\varepsilon)e_{p(\cdot,y)}(x,x_{0}). $$
(9)
Noting that \(u(x,y)\leq z(x,y)\) and ε is arbitrary, it follows (2). This completes the proof. □

Lemma 2.6

Let\(u, c, d\in C(\mathbf{\widetilde{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, \mathbf{R}_{+})\)and\(k\geq0\)be a constant. If
$$ u(x,y)\leq k+\int^{x}_{x_{0}}\int^{y}_{y_{0}}\biggl[c(s,t)u\bigl(\sigma(s),t\bigr)+d(s,t)u(s,t)\biggr]\Delta t\Delta s,\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
then
$$ u(x,y)\leq ke_{p(x,\cdot)}(y,y_{0}),\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
where
$$\begin{aligned}& p(x,y) = \int^{x}_{x_{0}}h(s,y)\Delta s,\quad \textit{and} \\& h(x,y) = c(x,y)+d(x,y). \end{aligned}$$

The proof of the Lemma is similar to the proof in Lemma 2.5, and therefore is omitted.

3 Main results

Theorem 3.1

Let\(u, a, b, h\in C(\mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), withbandhnondecreasing in each variable, \(c, d\in C(D, R_{+})\)and let\(f, g\in C(E, R_{+})\)be nondecreasing inxandy. Assumep, q, r, mandnare nonnegative constants with\(p\geq q\), \(p\geq r\), \(p\geq m\), \(p\geq n\), \(p\neq 0\). Suppose thatusatisfies the following inequality:
$$\begin{aligned}& u^{p}(x,y)\leq a(x,y) \\& \hphantom{u^{p}(x,y)\leq} {}+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \hphantom{u^{p}(x,y)\leq}{} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \hphantom{u^{p}(x,y)\leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(10)
If there exist positive constants\(K_{1}\)and\(K_{2}\)such that
$$\begin{aligned} \lambda :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)e_{R(s,t,\cdot )}(s,x _{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{R(\tau ,\eta ,\cdot )}(\tau ,x_{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(11)
then for arbitrary positive constants\(K_{3}\)and\(K_{4}\),
$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{A(\alpha ,\beta )}{1-\lambda h(\alpha , \beta )}e_{R(x,y,\cdot )}(x,x_{0}) \biggr]^{1/p},\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(12)
where
$$\begin{aligned}& \begin{aligned}[b] A(x,y) ={}&b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K _{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned} \end{aligned}$$
(13)
$$\begin{aligned}& R(x,y,s) = \int ^{y}_{y_{0}}b(x,y)F(x,y,s,t)\Delta t, \quad \textit{and} \end{aligned}$$
(14)
$$\begin{aligned}& F(x,y,s,t) =\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )\Delta \eta \Delta \tau . \end{aligned}$$
(15)

Proof

Denote
$$\begin{aligned}& z(x,y) \\& \quad =b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(16)
Then z is nondecreasing in each variable on \(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}\). From (10) and (16), we get
$$\begin{aligned} u(x,y)\leq \bigl[a(x,y)+z(x,y)\bigr]^{1/p}, \quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(17)
By (16) and (17), we obtain
$$\begin{aligned} z(x,y) \leq &b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{q/p} \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{r/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{m/p} \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{n/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \\ & (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(18)
Then for \(K_{1}\), \(K_{2}\) satisfying (11) and arbitrary \(K_{3}, K_{4}>0\), it follows from Lemma 2.2 that
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{q/p}\leq \frac{q}{p}K_{3}^{(q-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-q}{p}K_{3}^{q/p}, \end{aligned}$$
(19)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{r/p}\leq \frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-r}{p}K_{4}^{r/p}, \end{aligned}$$
(20)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{m/p}\leq \frac{m}{p}K_{1}^{(m-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-m}{p}K_{1}^{q/p}, \end{aligned}$$
(21)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{n/p}\leq \frac{n}{p}K_{2}^{(n-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-n}{p}K_{2}^{r/p}. \end{aligned}$$
(22)
According to (18)–(22), we have
$$\begin{aligned}& z(x,y) \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1} ^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K _{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad =A(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad \leq A(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y _{0}} \biggl[\frac{q}{p}K_{1}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} +z(s,t) \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4} ^{(r-p)/p}d(x,y,\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s \\& \quad =A(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}F(x,y,s,t)z(s,t) \Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$
(23)
where \(A(x,y)\) is defined in (13), and
$$\begin{aligned} B(x,y) =&h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s. \end{aligned}$$
From (23) and Lemma 2.4, we have
$$\begin{aligned} z(x,y)\leq \bigl(A(x,y)+B(x,y)\bigr)e_{R(x,y,\cdot )}(x,x_{0}),\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$
(24)
where \(R(x,y)\) is defined in (14). By (24) and since A, B are nondecreasing in each variable on \(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}\), we obtain
$$\begin{aligned} z(x,y) \leq & \bigl(A(x,y)+B(x,y)\bigr)e_{R(x,y,\cdot )}(x,x_{0}) \\ \leq & \bigl(A(\alpha ,\beta )+B(\alpha ,\beta )\bigr)e_{R(x,y,\cdot )}(x,x _{0}) \\ =&C(\alpha ,\beta )e_{R(x,y,\cdot )}(x,x_{0}), \end{aligned}$$
(25)
where \(C(x,y)=A(x,y)+B(x,y)\). From the definitions of B, C, λ and (25), we obtain
$$\begin{aligned} C(\alpha ,\beta ) =&A(\alpha ,\beta )+B(\alpha ,\beta ) \\ =&A(\alpha ,\beta )+h(\alpha ,\beta ) \int ^{\alpha }_{x_{0}} \int ^{ \beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s \\ \leq &A(\alpha ,\beta )+h(\alpha ,\beta ) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)C(\alpha ,\beta )e_{R(s,t,\cdot )}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )C(\alpha ,\beta )e_{R(\tau ,\eta ,\cdot )}(\tau ,x _{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ =&A(\alpha ,\beta )+C(\alpha ,\beta )h(\alpha ,\beta ) \int ^{\alpha } _{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)e_{R(s,t,\cdot )}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{R(\tau ,\eta ,\cdot )}(\tau ,x_{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ =&A(\alpha ,\beta )+\lambda C(\alpha ,\beta )h(\alpha ,\beta ). \end{aligned}$$
So we get
$$\begin{aligned} C(\alpha ,\beta ) \leq &\frac{A(\alpha ,\beta )}{1-\lambda h(\alpha , \beta )}. \end{aligned}$$
(26)
Noting (17), (25), and (26), we get the desired inequality (12). This completes the proof. □

Remark 3.1

If we take \(\mathbf{T}=\mathbf{N}\), \(b(x,y)=h(x,y) \equiv 1\), then Theorem 3.1 reduces to [38, Theorem 5]. If we take \(\mathbf{T}=\mathbf{N}\), \(b(x,y)=h(x,y)\equiv 1\), \(c(x,y,s,t)=c(s,t)\), \(f(x,y,s,t)=c(s,t)\), \(d(x,y,s,t)=g(x,y,s,t)\equiv 0\), then Theorem 3.1 reduces to [39, Theorem 2.1].

Theorem 3.2

Assume\(l\in C(\mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\)and\(b\in C( \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, (0, \infty ))\)are nondecreasing in each variable, \(v\in C(D, (0,\infty ))\)is nondecreasing inxandy, \(w\in C(D, (0,\infty ))\)is nonincreasing inxandy. Assumeu, a, c, d, f, g, h, p, q, r, mandnare defined as in Theorem 3.1; whilekandθare nonnegative constants with\(0< p< k<\theta \)or\(0<\theta <k<p\). Suppose thatusatisfies the following inequality:
$$\begin{aligned}& u^{p}(x,y) \\& \quad \leq a(x,y) \\& \qquad {}+ b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+ l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[v(x,y,s,t)u ^{k}(s,t)-w(x,y,s,t)u^{\theta }(s,t) \bigr]\Delta t\Delta s \\& \qquad {}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(27)
If there exist positive constants\(K_{1}\)and\(K_{2}\)such that
$$\begin{aligned} \widetilde{\lambda } :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)e_{\widetilde{R}(s,t, \cdot )}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{\widetilde{R}(\tau ,\eta ,\cdot )}(\tau ,x_{0}) \Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(28)
then for arbitrary positive constants\(K_{3}\)and\(K_{4}\),
$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{\widetilde{A}(\alpha ,\beta )}{1- \widetilde{\lambda } h(\alpha ,\beta )}e_{\widetilde{R}(x,y,\cdot )}(x,x _{0}) \biggr]^{1/p},\quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(29)
where
$$\begin{aligned}& \widetilde{A}(x,y)=b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y _{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \hphantom{\widetilde{A}(x,y)=}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K _{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \hphantom{\widetilde{A}(x,y)=}{}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)a(s,t) \Delta t \Delta s \\& \hphantom{\widetilde{A}(x,y)=}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \hphantom{\widetilde{A}(x,y)=}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned}$$
(30)
$$\begin{aligned}& \widetilde{R}(x,y,s)= \int ^{y}_{y_{0}}b(x,y) \widetilde{F}(x,y,s,t)\Delta t, \end{aligned}$$
(31)
$$\begin{aligned}& \widetilde{F}(x,y,s,t)=\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)+ \frac{l(x,y)}{b(x,y)}\varphi (x,y,s,t) \\& \hphantom{\widetilde{F}(x,y,s,t)=}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )\Delta \eta \Delta \tau ,\quad \textit{and} \end{aligned}$$
(32)
$$\begin{aligned}& \varphi (x,y,s,t)=\frac{v(x,y,s,t)(\theta -k)}{\theta -p} \biggl(\frac{(\theta -p)w(x,y,s,t)}{(k-p)v(x,y,s,t)} \biggr)^{(k-p)/(k- \theta )}. \end{aligned}$$
(33)

Proof

From Lemma 2.1 and (27), we have
$$\begin{aligned}& u^{p}(x,y) \\& \quad \leq a(x,y) \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)u ^{p}(s,t)\Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(34)
Denote
$$\begin{aligned}& z(x,y) \\& \quad = b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)u ^{p}(s,t)\Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(35)
From the assumptions on v and w, we have that φ is nondecreasing in x and y, then z is nondecreasing in each variable on \(\mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}\). From (34) and (35), we get
$$\begin{aligned} u(x,y)\leq \bigl[a(x,y)+z(x,y)\bigr]^{1/p},\quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(36)
By (35) and (36), we obtain
$$\begin{aligned}& z(x,y) \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{q/p} \\& \hphantom{z(x,y) \leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{r/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \hphantom{z(x,y) \leq}{}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]\Delta t\Delta s \\& \hphantom{z(x,y) \leq}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{m/p} \\& \hphantom{z(x,y) \leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{n/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}} _{2}. \end{aligned}$$
(37)
For \(K_{1}\), \(K_{2}\) satisfying (28) and arbitrary \(K_{3}, K _{4}>0\), it follows from Lemma 2.2 that
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{q/p}\leq \frac{q}{p}K_{3}^{(q-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-q}{p}K_{3}^{q/p}, \end{aligned}$$
(38)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{r/p}\leq \frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-r}{p}K_{4}^{r/p}, \end{aligned}$$
(39)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{m/p}\leq \frac{m}{p}K_{1}^{(m-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-m}{p}K_{1}^{q/p}, \end{aligned}$$
(40)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{n/p}\leq \frac{n}{p}K_{2}^{(n-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-n}{p}K_{2}^{r/p}. \end{aligned}$$
(41)
According to (37)–(41), we have
$$\begin{aligned}& z(x,y) \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t) \bigl[a(s,t)+z(s,t)\bigr] \Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)a(s,t) \Delta t \Delta s \\& \qquad {}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1} ^{m/p} \biggr] \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K _{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)z(s,t) \Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)z(s,t) \Delta t \Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \frac{l(x,y)}{b(x,y)}\varphi (x,y,s,t)z(s,t)\Delta t\Delta s \\& \quad \leq \widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t) + \frac{l(x,y)}{b(x,y)}\varphi (x,y,s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )\Delta \eta \Delta \tau \biggr]z(s,t)\Delta t\Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\widetilde{F}(x,y,s,t)z(s,t)\Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$
where à and are defined in (30) and (32),
$$\begin{aligned} B(x,y) =&h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s. \end{aligned}$$
The rest of the argument is similar to that of Theorem 3.1, and therefore is omitted. This completes the proof. □

Theorem 3.3

Assume that\(u, a\in C(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), whileb, c, d, f, g, h, p, q, r, mandnare defined as in Theorem 3.1. Suppose thatusatisfies the following inequality:
$$\begin{aligned}& u^{p}(x,y)\leq a(x,y) \\& \hphantom{u^{p}(x,y)\leq}{}+ b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[c(x,y,s,t)u ^{q} \bigl(s,\sigma (t)\bigr)+d(x,y,s,t)u^{r}(s,t) \bigr]\Delta t\Delta s \\& \hphantom{u^{p}(x,y)\leq}{}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \hphantom{u^{p}(x,y)\leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(42)
If there exist positive constants\(K_{1}\)and\(K_{2}\)such that
$$\begin{aligned} \xi :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K _{1}^{(m-p)/p}f(\alpha ,\beta ,s,t)e_{Q(\cdot ,t)}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{Q(\cdot ,\eta )}(\tau ,x_{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(43)
then for arbitrary positive constants\(K_{3}\)and\(K_{4}\),
$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{\widetilde{A}(\alpha ,\beta )}{1-\xi h( \alpha ,\beta )}e_{Q(\cdot ,y)}(x,x_{0}) \biggr]^{1/p},\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(44)
where
$$\begin{aligned}& \widetilde{A}(x,y) = b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a\bigl(s,\sigma (t)\bigr)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \hphantom{\widetilde{A}(x,y) =}{}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p}a(s,t)+ \frac{p-r}{p}K_{4} ^{r/p} \biggr] \biggr\} \Delta t \Delta s \\& \hphantom{\widetilde{A}(x,y) =}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \hphantom{\widetilde{A}(x,y) =}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta ) \\& \hphantom{\widetilde{A}(x,y) =}{}+\frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned}$$
(45)
$$\begin{aligned}& Q(x,y) = \int ^{y}_{y_{0}}h(\alpha ,\beta ,x,t)\Delta t, \quad \textit{and} \end{aligned}$$
(46)
$$\begin{aligned}& h(\alpha ,\beta ,s,t)=\frac{q}{p}K_{3}^{(q-p)/p}b( \alpha ,\beta )c( \alpha ,\beta ,s,t) +\frac{r}{p}K_{4}^{(r-p)/p}b( \alpha ,\beta )d( \alpha ,\beta ,s,t). \end{aligned}$$
(47)

Proof

Denote
$$\begin{aligned}& z(x,y) \\& \quad =b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[c(x,y,s,t)u ^{q} \bigl(s,\sigma (t)\bigr)+d(x,y,s,t)u^{r}(s,t) \bigr]\Delta t\Delta s \\& \qquad {}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s. \end{aligned}$$
(48)
Then z is nondecreasing in each variable on \(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}\). From (42) and (48), we get
$$\begin{aligned} u(x,y)\leq \bigl[a(x,y)+z(x,y)\bigr]^{1/p},\quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(49)
By (48) and (49), we obtain
$$\begin{aligned}& z(x,y) \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl\{ c(x,y,s,t) \bigl[a\bigl(s, \sigma (t)\bigr)+z\bigl(s,\sigma (t)\bigr) \bigr]^{q/p} \\& \hphantom{z(x,y) \leq}{}+d(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{r/p}\Delta \eta \Delta \tau \bigr\} \Delta t\Delta s \\& \hphantom{z(x,y) \leq}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{m/p} \\& \hphantom{z(x,y) \leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{n/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(50)
For \(K_{1}\), \(K_{2}\) satisfying (43) and arbitrary \(K_{3}, K _{4}>0\), it follows from Lemma 2.2 that
$$\begin{aligned}& \bigl[a\bigl(x,\sigma (y)\bigr)+z\bigl(x,\sigma (y)\bigr) \bigr]^{q/p}\leq \frac{q}{p}K_{3}^{(q-p)/p} \bigl[a\bigl(x,\sigma (y)\bigr)+z\bigl(x,\sigma (y)\bigr)\bigr]+ \frac{p-q}{p}K_{3}^{q/p}, \end{aligned}$$
(51)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{r/p}\leq \frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-r}{p}K_{4}^{r/p}, \end{aligned}$$
(52)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{m/p}\leq \frac{m}{p}K_{1}^{(m-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-m}{p}K_{1}^{m/p}, \end{aligned}$$
(53)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{n/p}\leq \frac{n}{p}K_{2}^{(n-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-n}{p}K_{2}^{n/p}. \end{aligned}$$
(54)
According to (50)–(54), we have
$$\begin{aligned}& z(x,y) \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}\bigl[a\bigl(s,\sigma (t) \bigr)+z\bigl(s,\sigma (t)\bigr)\bigr] \\& \qquad {}+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-r}{p}K_{4}^{r/p} \biggr] \biggr\} \Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a\bigl(s,\sigma (t)\bigr)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p}a(s,t)+ \frac{p-r}{p}K_{4}^{r/p} \biggr] \biggr\} \Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1} ^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K _{3}^{(q-p)/p}c(x,y,s,t)z\bigl(s,\sigma (t)\bigr) \\& \qquad {}+\frac{r}{p}K_{4}^{(r-p)/p}d(x,y,s,t)z(s,t) \biggr]\Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z \bigl(s,\sigma (t)\bigr) \\& \qquad {} +\frac{r}{p}K_{4}^{(r-p)/p}d(x,y,s,t)z(s,t) \biggr]\Delta t \Delta s \\& \quad \leq \widetilde{A}(\alpha ,\beta )+B(\alpha ,\beta )+b( \alpha ,\beta ) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3} ^{(q-p)/p}c(\alpha ,\beta ,s,t)z\bigl(s,\sigma (t)\bigr) \\& \qquad {} +\frac{r}{p}K_{4}^{(r-p)/p}d(\alpha ,\beta ,s,t)z(s,t) \biggr]\Delta t\Delta s \\& \quad =\widetilde{C}(\alpha ,\beta )+b(\alpha ,\beta ) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c( \alpha , \beta ,s,t)z\bigl(s,\sigma (t)\bigr) \\& \qquad {}+\frac{r}{p}K_{4}^{(r-p)/p}d(\alpha ,\beta ,s,t)z(s,t) \biggr]\Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
where \(\widetilde{C}(x,y)=\widetilde{A}(x,y)+B(x,y)\), Ã is defined in (45), and
$$\begin{aligned} B(x,y) =&h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s. \end{aligned}$$
From Lemma 2.5, we have
$$\begin{aligned} z(x,y)\leq \widetilde{C}(\alpha ,\beta )e_{Q(\cdot ,y)}(x,x_{0}),\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$
where Q is defined in (46). The rest of the proof is similar to that of Theorem 3.1, and therefore is omitted. This completes the proof. □

Theorem 3.4

Assume\(u, a\in C(\mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), whileb, c, d, f, g, h, p, q, r, mandnare defined as in Theorem 3.1. Suppose thatusatisfies the following inequality:
$$\begin{aligned}& u^{p}(x,y)\leq a(x,y) \\& \hphantom{u^{p}(x,y)\leq}{}+ b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[c(x,y,s,t)u ^{q} \bigl(\sigma (s),t\bigr)+d(x,y,s,t)u^{r}(s,t) \bigr]\Delta t\Delta s \\& \hphantom{u^{p}(x,y)\leq}{}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \hphantom{u^{p}(x,y)\leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
If there exist positive constants\(K_{1}\)and\(K_{2}\)such that
$$\begin{aligned} \xi :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K _{1}^{(m-p)/p}f(\alpha ,\beta ,s,t)e_{\widetilde{Q}(s,\cdot )}(t,y _{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{\widetilde{Q}(\tau ,\cdot )}(\eta ,y_{0}) \Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
then for arbitrary positive constants\(K_{3}\)and\(K_{4}\),
$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{\widetilde{F}(\alpha ,\beta )}{1-\xi h( \alpha ,\beta )}e_{\widetilde{Q}(x,\cdot )}(y,y_{0}) \biggr]^{1/p}, \quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
where
$$\begin{aligned} \widetilde{F}(x,y) =& b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a\bigl(\sigma (s),t\bigr)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\ &{}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p}a(s,t)+ \frac{p-r}{p}K_{4} ^{r/p} \biggr] \biggr\} \Delta t \Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned}$$
and
$$\begin{aligned} \widetilde{Q}(x,y) =& \int ^{x}_{x_{0}}h(\alpha ,\beta ,s,y)\Delta s. \end{aligned}$$
The proof of the theorem is similar to that of Theorem 3.3, and therefore is omitted.

4 Application

In this section, we will present an application for our results.

Example 1

Consider the following partial dynamic equation with positive and negative coefficients:
$$\begin{aligned} \textstyle\begin{cases} \frac{\partial }{\Delta _{2} y} ( \frac{\partial u(x,y)}{\Delta _{1} x} ) \\ \quad =c(x,y)u^{q}(x,y)+v(x,y)u ^{k}(x,y) \\ \qquad {}-w(x,y)u^{\theta }(x,y)+\int ^{x}_{x_{0}}\int ^{y}_{y_{0}}d(\tau , \eta )u^{r}(\tau ,\eta )\Delta \eta \Delta \tau \\ \qquad {}+g(x,y)\int ^{\alpha }_{x_{0}}\int ^{\beta }_{y_{0}}f(s,t)u^{m}(s,t) \Delta t\Delta s, \quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \\ u(x,y_{0})=\phi (x),\qquad u(x_{0},y)=\psi (y),\qquad u(x_{0},y_{0})=u_{0}, \end{cases}\displaystyle \end{aligned}$$
(55)
where \(u, c, d, f, g \in C(\mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), \(v, w \in C( \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, (0, \infty ))\), q, r and m are nonnegative constants with \(1\geq q\), \(1 \geq r\), \(1\geq m\). Assume θ is a quotient of an even integer over odd integer, k is a nonnegative constant with \(0<1<k<\theta \) or \(0<\theta <k<1\).
If there exists a positive constant \(K_{1}\) such that
$$\begin{aligned} \widetilde{\lambda } :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \bigl[mK_{1}^{m-1}f(s,t)e_{\widetilde{R}(\cdot ,t)}(s,x_{0}) \bigr] \Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(56)
then for arbitrary positive constants \(K_{3}\) and \(K_{4}\),
$$\begin{aligned} u(x,y)\leq a(x,y)+\frac{\widetilde{A}(\alpha ,\beta )}{1- \widetilde{\lambda } h(\alpha ,\beta )}e_{\widetilde{R}(\cdot ,y)}(x,x _{0}),\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(57)
where
$$\begin{aligned}& a(x,y) = \bigl\vert \phi (x) \bigr\vert + \bigl\vert \psi (y) \bigr\vert + \vert u_{0} \vert , \end{aligned}$$
(58)
$$\begin{aligned}& \widetilde{A}(x,y) = \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(s,t) \bigl[qK_{3}^{q-1}a(s,t)+(1-q)K_{3}^{q} \bigr] \\& \hphantom{\widetilde{A}(x,y) =}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(\tau ,\eta ) \bigl[rK_{4}^{r-1}a( \tau ,\eta )+(1-r)K_{4}^{r} \bigr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \hphantom{\widetilde{A}(x,y) =}{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (s,t)a(s,t)\Delta t\Delta s \\& \hphantom{\widetilde{A}(x,y) =}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}}f(s,t) \bigl[mK_{1} ^{m-1}a(s,t)+(1-m)K_{1}^{m} \bigr]\Delta t \Delta s, \end{aligned}$$
(59)
$$\begin{aligned}& h(x,y) = \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}g(s,t)\Delta t\Delta s, \end{aligned}$$
(60)
$$\begin{aligned}& \widetilde{R}(x,y) = \int ^{y}_{y_{0}}\widetilde{F}(x,t)\Delta t, \end{aligned}$$
(61)
$$\begin{aligned}& \widetilde{F}(x,y) =qK_{3}^{q-1}c(x,y)+\varphi (x,y)+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}rK_{4}^{r-1}d( \tau ,\eta )\Delta \eta \Delta \tau , \quad \text{and} \end{aligned}$$
(62)
$$\begin{aligned}& \varphi (x,y) =\frac{(\theta -k)v(x,y)}{\theta -1} \biggl(\frac{( \theta -1)w(x,y)}{(k-1)v(x,y)} \biggr)^{(k-1)/(k-\theta )}. \end{aligned}$$
(63)

Proof

Let \(u(x,y)\) be a solution of (55). Then, it satisfies the following dynamical integral equation:
$$\begin{aligned} u(x,y) =&\phi (x)+\psi (y)-u_{0} \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(s,t)u^{q}(s,t)+ \int ^{s}_{x _{0}} \int ^{t}_{y_{0}}d(\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[v(s,t)u^{k}(s,t)-w(s,t)u^{ \theta }(s,t) \bigr]\Delta t\Delta s \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}g(s,t)\Delta t\Delta s \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}}f(s,t)u^{m}(s,t) \Delta t\Delta s. \end{aligned}$$
(64)
Then from (58), (60), and (63), we have
$$\begin{aligned} \bigl\vert u(x,y) \bigr\vert \leq& a(x,y) \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(s,t) \bigl\vert u(s,t) \bigr\vert ^{q}+ \int ^{s} _{x_{0}} \int ^{t}_{y_{0}}d(\tau ,\eta ) \bigl\vert u(\tau ,\eta ) \bigr\vert ^{r}\Delta \eta \Delta \tau \biggr]\Delta t \Delta s \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[v(s,t) \bigl\vert u(s,t) \bigr\vert ^{k}-w(s,t) \bigl\vert u(s,t) \bigr\vert ^{ \theta } \bigr]\Delta t\Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}}f(s,t) \bigl\vert u(s,t) \bigr\vert ^{m} \Delta t\Delta s,\quad (x,y)\in \mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(65)
An application of Theorem 3.2 with \(p=1\), \(b(x,y)=l(x,y)\equiv 1\), \(c(x,y,s,t)=c(s,t)\), \(d(x,y,s,t)=d(s,t)\), \(v(x,y,s,t)=v(s,t)\), \(w(x,y,s,t)=w(s,t)\), \(f(x,y,s,t)=f(s,t)\) and \(g(x,y,s,t)\equiv 0\) yields (57). □

5 Conclusions

We have established several generalized Volterra–Fredholm-type dynamical integral inequalities in two independent variables on time scale pairs using an inequality introduced in [33]. As one can see, Theorems 3.13.4 generalize many known results in the literature. Theorem 3.2 can be applied to deal with the bounds of solutions of certain partial dynamic equation with positive and negative coefficients. Moreover, unlike some existing results in the literature (e.g., [28, 36, 37]), the integral inequalities considered in this paper involve the forward jump operator \(\sigma (x)\) on a time scale, which results in difficulties in the estimation on the explicit bounds of the unknown function \(u(x,y)\).

Notes

Acknowledgements

The authors are indebted to the anonymous referees for their valuable suggestions and helpful comments which helped improve the paper significantly.

Authors’ contributions

All authors contributed equally and read and approved the final version of the manuscript.

Funding

This research was supported by the Natural Science Foundation of Shandong Province (China) (No. ZR2018MA018), and the National Natural Science Foundations of China (Nos. 11671227, 61873144).

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg (1988) Google Scholar
  2. 2.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001) zbMATHCrossRefGoogle Scholar
  3. 3.
    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) zbMATHCrossRefGoogle Scholar
  4. 4.
    Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Liu, H.D., Meng, F.W., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 219(5), 2739–2748 (2012) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, D., Kou, K.I., Xia, Y.H.: Linear quaternion-valued dynamic equations on time scales. J. Appl. Anal. Comput. 8, 172–201 (2018) MathSciNetGoogle Scholar
  7. 7.
    Tunç, E., Liu, H.D.: Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann–Stieltjes integrals. Electron. J. Differ. Equ. 2018, 54 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Liu, H.D., Meng, F.W.: Existence of positive periodic solutions for a predator-prey system of Holling type IV function response with mutual interference and impulsive effects. Discrete Dyn. Nat. Soc. 2015, 138984 (2015) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhao, D.L., Liu, H.D.: Coexistence in a two species chemostat model with Markov switchings. Appl. Math. Lett. 94, 266–271 (2019) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Erbe, L., Jia, B.G., Peterson, A.: On the asymptotic behavior of solutions of Emden–Fowler equations on time scales. Ann. Mat. Pura Appl. 191, 205–217 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Liu, H.D., Ma, C.Q.: Oscillation criteria for second-order neutral delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2013, Article ID 530457 (2013) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Federson, M., Mesquita, J.G., Slavik, A.: Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 252, 3816–3847 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, H.D., Liu, P.C.: Oscillation criteria for some new generalized Emden–Fowler dynamic equations on time scales. Abstr. Appl. Anal. 2013, Article ID 962590 (2013) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zhang, B., Zhuang, J.S., Liu, H.D., Cao, J.D., Xia, Y.H.: Master-slave synchronization of a class of fractional-order Takagi–Sugeno fuzzy neural networks. Adv. Differ. Equ. 2018, 473 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Zhao, D.L., Yuan, S.L., Liu, H.D.: Random periodic solution for a stochastic SIS epidemic model with constant population size. Adv. Differ. Equ. 2018, 64 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Liu, H.D., Ma, C.Q.: Oscillation criteria of even order delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2014, Article ID 395381 (2014) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Liu, H.D.: Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities. Adv. Differ. Equ. 2018, 229 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Xia, Y.H., Li, J.B., Wong, P.J.Y.: On the topological classification of dynamic equations on time scales. Nonlinear Anal., Real World Appl. 14(6), 2231–2248 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Chen, L., Huang, C.D., Liu, H.D., Xia, Y.H.: Anti-synchronization of a class of chaotic systems with application to Lorenz system: a unified analysis of the integer order and fractional order. Mathematics 7(6), 559 (2019) CrossRefGoogle Scholar
  20. 20.
    Karpuz, B.: Volterra theory on time scales. Results Math. 65(3), 263–292 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Liu, H.D., Meng, F.W.: Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv. Differ. Equ. 2016, 291 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zhao, D.L., Yuan, S.L., Liu, H.D.: Stochastic dynamics of the delayed chemostat with Lévy noises. Int. J. Biomath. 12(5), 1950056 (2019) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, 22 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Slavik, A.: Averaging dynamic equations on time scales. J. Math. Anal. Appl. 388, 996–1012 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Meng, Z.W., Zheng, B., Wen, C.B.: Some new integral inequalities on time scales containing integration on infinite intervals. J. Inequal. Appl. 2013, 245 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Liu, H.D.: An improvement of the Lyapunov inequality for certain higher order differential equations. J. Inequal. Appl. 2018, 215 (2018) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Anderson, D.R.: Nonlinear dynamic integral inequalities in two independent variables on time scale pairs. Adv. Dyn. Syst. Appl. 3, 1–13 (2008) MathSciNetGoogle Scholar
  29. 29.
    Liu, H.D., Meng, F.W.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Bohner, E.A., Bohner, M., Akin, F.: Pachpatte inequalities on time scale. J. Inequal. Pure Appl. Math. 6(1), Article ID 6 (2005) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Liu, H.D.: Some new half-linear integral inequalities on time scales and applications. Discrete Dyn. Nat. Soc. 2019, 9860302 (2019) MathSciNetGoogle Scholar
  32. 32.
    Saker, S.H.: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633–645 (2011) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Liu, H.D., Li, C.Y., Shen, F.C.: A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales. Adv. Differ. Equ. 2019, 311 (2019) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xia, Y.H., Chen, L., Kou, K.I.: Holder regularity of Grobman–Hartman theorem for dynamic equations on measure chains. Bull. Malays. Math. Sci. Soc. 41(3), 1153–1180 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Pachpatte, D.B.: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7, Article ID 143 (2006) MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ferreira, R.A.C., Torres, D.F.M.: Some linear and nonlinear integral inequalities on time scales in two independent variables. Nonlinear Dyn. Syst. Theory 9(2), 161–169 (2009) MathSciNetzbMATHGoogle Scholar
  37. 37.
    Liu, H.D., Meng, F.W.: Nonlinear retarded integral inequalities on time scales and their applications. J. Math. Inequal. 12(1), 219–234 (2018) MathSciNetzbMATHGoogle Scholar
  38. 38.
    Feng, Q.H., Meng, F.W., Fu, B.S.: Some new generalized Volterra–Fredholm type finite difference inequalities involving four iterated sums. Appl. Math. Comput. 219, 8247–8258 (2013) MathSciNetzbMATHGoogle Scholar
  39. 39.
    Ma, Q.H.: Estimates on some power nonlinear Volterra–Fredholm type discrete inequalities and their applications. J. Comput. Appl. Math. 233, 2170–2180 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Liu, H.D.: Half-linear Volterra–Fredholm type integral inequalities on time scales and their applications. J. Appl. Anal. Comput. 10(1), 234–248 (2020) Google Scholar
  41. 41.
    Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444–451 (2013) MathSciNetzbMATHGoogle Scholar
  42. 42.
    Liu, H.D., Meng, F.W.: Some new generalized Volterra–Fredholm type discrete fractional sum inequalities and their applications. J. High Energy Phys. 2016, 213 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Wang, J.F., Meng, F.W., Gu, J.: Estimates on some power nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Adv. Differ. Equ. 2017, 257 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Liu, H.D.: On some nonlinear retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2018, 211 (2018) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, 293 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Gu, J., Meng, F.W.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235–242 (2014) MathSciNetzbMATHGoogle Scholar
  47. 47.
    Jiang, F.C., Meng, F.W.: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205, 479–486 (2007) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  1. 1.School of Mathematical SciencesQufu Normal UniversityQufuChina
  2. 2.School of StatisticsQufu Normal UniversityQufuChina

Personalised recommendations