Second-order numerical methods for the tempered fractional diffusion equations
- 96 Downloads
Abstract
In this paper, a class of second-order tempered difference operators for the left and right Riemann–Liouville tempered fractional derivatives is constructed. And a class of second-order numerical methods is presented for solving the space tempered fractional diffusion equations, where the space tempered fractional derivatives are evaluated by the proposed tempered difference operators, and in the time direction is discreted by the Crank–Nicolson method. Numerical schemes are proved to be unconditionally stable and convergent with order \(O(h^{2}+\tau ^{2})\). Numerical experiments demonstrate the effectiveness of the numerical schemes.
Keywords
Tempered fractional diffusion equations Second-order tempered difference operators Stability and convergence1 Introduction
In recent years, many fractional models [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 24, 25, 26, 27] with (tempered) fractional derivatives have been widely applied in many fields of science and technology, a lot of research results have been obtained. Among them, Li and Deng [14] constructed a class of second-order tempered weighted and shifted Grünwald difference operators (abbr. TWSGD) for the Riemann–Liouville tempered fractional derivatives, and then a class of second-order numerical schemes was proposed for solving a two-sided space tempered fractional diffusion equation. Numerical schemes are unconditionally stable and convergent with order \(O(h^{2}+\tau ^{2})\). Dehghan et al. [6] developed a high-order numerical scheme for the space-time tempered fractional diffusion-wave equation, the numerical scheme was proved to be unconditionally stable and convergent with order \(O(h^{4}+\tau ^{2})\). Qu and Liang [18] used the Crank–Nicolson method and TWSGD method [14] to solve a class of variable-coefficient tempered fractional diffusion equations and proved that the numerical schemes are unconditionally stable and convergent with order \(O(h^{2}+\tau ^{2})\). Yu et al. [24] extended quasi-compact discretizations to Riemann–Liouville tempered fractional derivatives and derived the numerical scheme for solving a tempered fractional diffusion equation. Yu et al. [25] constructed a numerical scheme for one-sided space tempered fractional diffusion equation, and the numerical scheme was shown to be stable and convergent with order \(O(h^{3}+\tau )\). Çelik and Duman [2] solved the symmetric space tempered fractional diffusion equation by the finite element method and achieved convergence order \(O(h^{2}+\tau ^{2})\). Zhang et al. [27] proposed a modified second-order Lubich tempered difference operator for the Riemann–Liouville tempered fractional derivatives and constructed a numerical scheme for solving the normalized Riesz space tempered fractional diffusion equation. The stability and convergence of the numerical scheme have been proved. Hu and Cao [12] combined the implicit midpoint method and the modified second-order Lubich tempered difference operator to derive a numerical scheme for solving the normalized Riesz space tempered fractional diffusion equation with a nonlinear source term and discussed the stability and convergence of the numerical scheme.
Obviously, when \(\lambda = 0\), the left and right Riemann–Liouville tempered fractional derivatives degenerate to the left and right Riemann–Liouville fractional derivatives, respectively. When \(l=r=-\frac{1}{2\cos (\frac{\alpha \pi }{2})}\), the two-sided tempered fractional diffusion equation degenerates to the normalized Riesz tempered fractional diffusion equation.
Considering these existing works in the literature, the aim of this paper is to try to give a class of new second-order tempered difference operators; then, using the Crank–Nicolson method and the proposed difference operators, to construct a class of second-order numerical methods for solving problem (1) and give the theoretical analysis of the numerical methods.
The outline of this paper is arranged as follows. In Sect. 2, new second-order tempered difference operators are introduced. In Sect. 3, numerical schemes for problem (1) are derived. In Sect. 4, the stability and convergence of the numerical schemes are obtained. In Sect. 5, some numerical examples are given to verify the theoretical results. In Sect. 6, we summarize the work of this paper.
2 Second-order tempered difference operators
Lemma 2.1
([27])
Lemma 2.2
Lemma 2.3
Proof
Lemma 2.4
Proof
In this part, because of the selectivity of \(\gamma _{3}\), a class of approximation operators with second-order accuracy for the Riemann–Liouville tempered fractional derivatives is given.
3 Numerical schemes
For the space interval \([a,b]\) and the time interval \([0,T]\), we choose the grid points \(x_{i} = a+ih\), \(0\leq i\leq N\), \(t_{n} = n\tau \), \(0\leq n\leq M\), where \(h=(b-a)/N\) is the space stepsize, \(\tau = T/M\) denotes the time stepsize. The exact solution and numerical solution at the point \((x_{i},t_{n})\) are denoted by \(u_{i}^{n}=u(x_{i},t_{n})\) and \(U_{i}^{n}\), respectively. Denoting \(t_{n+1/2}=(t_{n}+t_{n+1})/2\), \(f_{i}^{n}=f(x_{i},t_{n})\). In this paper, \(u(x,\cdot )\) is defined on the bounded interval \([a, b]\) and \(u(x,\cdot )\) belongs to \(S_{\lambda }^{2+\alpha }(\mathbb{R})\) after zero extension on the interval \(x\in (-\infty ,a)\cup (b,+\infty )\).
4 Stability and convergence of the numerical schemes
In order to analyze the stability and convergence of the numerical schemes, we give some lemmas.
Lemma 4.1
([19])
A real matrixAof orderNis negative definite if and only if\(D=\frac{A+A^{T}}{2}\)is negative definite.
Lemma 4.2
- (1)
\(\alpha \in (1,\frac{\sqrt{57}-5}{2}]\)and\(\frac{(2\alpha ^{2}-\alpha +2)(1-\alpha )}{5\alpha ^{2}+4}\leq \gamma _{3}\leq \frac{(2-\alpha )(\alpha -1)}{\alpha ^{2}+5\alpha -4}\);
- (2)
\(\alpha \in (\frac{\sqrt{57}-5}{2},\frac{\sqrt{73}-5}{2})\)and\(\max\{ \frac{(2\alpha ^{2}-\alpha +2)(1-\alpha )}{5\alpha ^{2}+4},\frac{(2-\alpha )^{2}}{8-\alpha ^{2}-5\alpha } \} \leq \gamma _{3}\leq \frac{(2-\alpha )(\alpha -1)}{\alpha ^{2}+5\alpha -4}\);
- (3)
\(\alpha \in [\frac{\sqrt{73}-5}{2},2)\)and\(\frac{(2-\alpha )^{2}}{8-\alpha ^{2}-5\alpha } \leq \gamma _{3}\leq \frac{(2-\alpha )(\alpha -1)}{\alpha ^{2}+5 \alpha -4}\),
Proof
- (1)
\(\alpha \in (1,\frac{\sqrt{57}-5}{2}]\) and \(\frac{(2\alpha ^{2}-\alpha +2)(1-\alpha )}{5\alpha ^{2}+4}\leq \gamma _{3}\leq \frac{(2-\alpha )(\alpha -1)}{\alpha ^{2}+5\alpha -4}\);
- (2)
\(\alpha \in (\frac{\sqrt{57}-5}{2},\frac{\sqrt{73}-5}{2})\) and \(\max \{ \frac{(2\alpha ^{2}-\alpha +2)(1-\alpha )}{5\alpha ^{2}+4}, \frac{(2-\alpha )^{2}}{8-\alpha ^{2}-5\alpha } \} \leq \gamma _{3}\leq \frac{(2-\alpha )(\alpha -1)}{\alpha ^{2}+5\alpha -4}\);
- (3)
\(\alpha \in [\frac{\sqrt{73}-5}{2},2)\) and \(\frac{(2-\alpha )^{2}}{8-\alpha ^{2}-5\alpha }\leq \gamma _{3}\leq \frac{(2-\alpha )(\alpha -1)}{\alpha ^{2}+5\alpha -4}\),
The proof is completed. □
Theorem 4.1
If matrix A is defined by (22), then\(D=\frac{A+A^{T}}{2}\)is strictly diagonally dominant and negative definite.
Proof
The proof is completed. □
Theorem 4.2
The numerical scheme (20) is unconditionally stable.
Proof
The proof is completed. □
Define \(\mathbf{U}_{h}\) = {\(\mathbf{u}\mid \mathbf{u}=\{\mathbf{u}_{i}\}\) is a grid function defined on \(\{x_{i}=a+ih\}_{i=1}^{N-1}\) and \(\mathbf{u}_{0}=\mathbf{u}_{N}=0\)}. And we define the corresponding discrete \(L_{2}\)-norm \(\|\mathbf{u}\|_{L_{2}}=(h\sum_{i=1}^{N-1} \mathbf{u}_{i}^{2})^{1/2}\) for all \(\mathbf{u}\in \mathbf{U}_{h}\).
Lemma 4.3
([14])
Theorem 4.3
Proof
5 Numerical experiments
Example 1
([14])
The exact solution is \(u(x,t)=e^{-\lambda x+t}x^{2+\alpha }\).
Errors and corresponding observation orders at \(t=1\), \(\alpha =1.2\)
λ | h = τ | \(\gamma _{3}=-0.065\) | \(\gamma _{3}=0\) | \(\gamma _{3}=0.046\) | |||
---|---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | ||
1/50 | 1/10 | 1.3091e−03 | 8.9048e−03 | 1.5872e−02 | |||
1/20 | 3.4456e−04 | 1.9257 | 2.2077e−03 | 2.0120 | 3.9986e−03 | 1.9889 | |
1/40 | 8.8261e−05 | 1.9649 | 5.4891e−04 | 2.0079 | 9.9862e−04 | 2.0015 | |
1/80 | 2.2181e−05 | 1.9925 | 1.3688e−04 | 2.0037 | 2.4933e−04 | 2.0019 | |
0 | 1/10 | 5.4687e−03 | 1.3477e−02 | 1.9237e−02 | |||
1/20 | 1.2413e−03 | 2.1393 | 3.2862e−03 | 2.0360 | 4.7459e−03 | 2.0191 | |
1/40 | 2.9794e−04 | 2.0588 | 8.1182e−04 | 2.0172 | 1.1770e−03 | 2.0116 | |
1/80 | 7.3348e−05 | 2.0222 | 2.0193e−04 | 2.0073 | 2.9313e−04 | 2.0055 | |
2 | 1/10 | 3.9639e−03 | 8.1213e−03 | 1.0887e−02 | |||
1/20 | 9.7650e−04 | 2.0212 | 2.1455e−03 | 1.9204 | 2.9861e−03 | 1.8663 | |
1/40 | 2.4398e−04 | 2.0009 | 5.4410e−04 | 1.9794 | 7.6695e−04 | 1.9611 | |
1/80 | 6.1112e−05 | 1.9972 | 1.3648e−04 | 1.9952 | 1.9300e−04 | 1.9905 |
Errors and corresponding observation orders at \(t=1\), \(\alpha =1.5\)
λ | h = τ | \(\gamma _{3}=-0.142\) | \(\gamma _{3}=0\) | \(\gamma _{3}=0.333\) | |||
---|---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | ||
1/50 | 1/10 | 7.7227e−03 | 1.0465e−02 | 5.3286e−02 | |||
1/20 | 2.0245e−03 | 1.9315 | 2.6046e−03 | 2.0064 | 1.3526e−02 | 1.9780 | |
1/40 | 5.1203e−04 | 1.9833 | 6.4995e−04 | 2.0027 | 3.3823e−03 | 1.9997 | |
1/80 | 1.2836e−04 | 1.9960 | 1.6239e−04 | 2.0009 | 8.4480e−04 | 2.0013 | |
0 | 1/10 | 5.7263e−03 | 1.1908e−02 | 5.3855e−02 | |||
1/20 | 1.5271e−03 | 1.9068 | 2.9592e−03 | 2.0087 | 1.3568e−02 | 1.9889 | |
1/40 | 3.8755e−04 | 1.9783 | 7.3811e−04 | 2.0033 | 3.3854e−03 | 2.0028 | |
1/80 | 9.7221e−05 | 1.9950 | 1.8439e−04 | 2.0011 | 8.4508e−04 | 2.0022 | |
2 | 1/10 | 2.5444e−03 | 6.6079e−03 | 2.2144e−02 | |||
1/20 | 7.8955e−04 | 1.6882 | 1.7420e−03 | 1.9234 | 6.9946e−03 | 1.6626 | |
1/40 | 2.0774e−04 | 1.9263 | 4.4145e−04 | 1.9804 | 1.8798e−03 | 1.8956 | |
1/80 | 5.2509e−05 | 1.9841 | 1.1072e−04 | 1.9953 | 4.7865e−04 | 1.9735 |
Errors and corresponding observation orders at \(t=1\), \(\alpha =1.8\)
λ | h = τ | \(\gamma _{3}=-0.009\) | \(\gamma _{3}=0\) | \(\gamma _{3}=0.019\) | |||
---|---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | ||
1/50 | 1/10 | 7.0968e−03 | 8.2095e−03 | 1.0559e−02 | |||
1/20 | 1.7653e−03 | 2.0073 | 2.0554e−03 | 1.9979 | 2.6681e−03 | 1.9846 | |
1/40 | 4.4073e−04 | 2.0019 | 5.1397e−04 | 1.9997 | 6.6861e−04 | 1.9966 | |
1/80 | 1.1015e−04 | 2.0004 | 1.2850e−04 | 1.9999 | 1.6724e−04 | 1.9992 | |
0 | 1/10 | 7.6081e−03 | 8.7279e−03 | 1.1093e−02 | |||
1/20 | 1.8930e−03 | 2.0069 | 2.1846e−03 | 1.9983 | 2.8006e−03 | 1.9858 | |
1/40 | 4.7265e−04 | 2.0018 | 5.4624e−04 | 1.9998 | 7.0166e−04 | 1.9969 | |
1/80 | 1.1812e−04 | 2.0005 | 1.3656e−04 | 2 | 1.7550e−04 | 1.9993 | |
2 | 1/10 | 3.2345e−03 | 3.6657e−03 | 4.5644e−03 | |||
1/20 | 8.2615e−04 | 1.9691 | 9.5022e−04 | 1.9478 | 1.2121e−03 | 1.9129 | |
1/40 | 2.0755e−04 | 1.9929 | 2.3977e−04 | 1.9866 | 3.0865e−04 | 1.9735 | |
1/80 | 5.1949e−05 | 1.9983 | 6.0075e−05 | 1.9968 | 7.7317e−05 | 1.9971 |
Example 2
([14])
The exact solution is \(u(x,t)=e^{\lambda x+t}(1-x)^{2+\alpha }\).
Errors and corresponding observation orders at \(t=1\), \(\lambda =1/50\)
α | \(\beta _{3}\) | \(\gamma _{3}\) | h = τ | CN-TWSGD | ||
---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | CPU time | ||||
1.2 | −0.042 | −0.065 | 1/10 | 4.6812e−03 | 1.2119e−02 | |
1/20 | 1.1156e−03 | 2.0691 | 2.1528e−02 | |||
1/40 | 2.6920e−04 | 2.0511 | 4.9296e−02 | |||
1/80 | 6.6095e−05 | 2.0261 | 1.8533e−01 | |||
1.4 | −0.093 | −0.09 | 1/10 | 3.5917e−03 | 1.1856e−02 | |
1/20 | 8.0067e−04 | 2.1654 | 1.9344e−02 | |||
1/40 | 1.8738e−04 | 2.0952 | 5.0544e−02 | |||
1/80 | 4.5523e−05 | 2.0413 | 1.9469e−01 | |||
1.6 | −0.1 | −0.062 | 1/10 | 2.8683e−03 | 1.5912e−02 | |
1/20 | 6.8778e−04 | 2.0602 | 1.7784e−02 | |||
1/40 | 1.7060e−04 | 2.0113 | 4.4928e−02 | |||
1/80 | 4.2575e−05 | 2.0025 | 1.8221e−01 | |||
1.8 | −0.055 | −0.009 | 1/10 | 4.2551e−03 | 1.3104e−02 | |
1/20 | 1.0522e−03 | 2.0158 | 1.8408e−02 | |||
1/40 | 2.6237e−04 | 2.0037 | 4.4304e−02 | |||
1/80 | 6.5551e−05 | 2.0009 | 1.9531e−01 |
Errors and corresponding observation orders at \(t=1\), \(\lambda =1/50\)
α | \(\beta _{3}\) | \(\gamma _{3}\) | h = τ | Proposed | ||
---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | CPU time | ||||
1.2 | −0.042 | −0.065 | 1/10 | 1.3356e−03 | 1.5912e−02 | |
1/20 | 3.5152e−04 | 1.9258 | 2.2152e−02 | |||
1/40 | 9.0044e−05 | 1.9649 | 4.8672e−02 | |||
1/80 | 2.2629e−05 | 1.9925 | 1.9594e−01 | |||
1.4 | −0.093 | −0.09 | 1/10 | 1.4612e−03 | 1.3728e−02 | |
1/20 | 4.2047e−04 | 1.7971 | 1.9344e−02 | |||
1/40 | 1.0892e−04 | 1.9487 | 5.0856e−02 | |||
1/80 | 2.7456e−05 | 1.9881 | 2.0280e−01 | |||
1.6 | −0.1 | −0.062 | 1/10 | 2.2694e−03 | 1.2480e−02 | |
1/20 | 5.0328e−04 | 2.1729 | 1.9656e−02 | |||
1/40 | 1.2209e−04 | 2.0434 | 5.0544e−02 | |||
1/80 | 3.0302e−05 | 2.0105 | 1.9313e−01 | |||
1.8 | −0.055 | −0.009 | 1/10 | 7.1897e−03 | 1.4664e−02 | |
1/20 | 1.7878e−03 | 2.0077 | 2.2464e−02 | |||
1/40 | 4.4632e−04 | 2.0020 | 5.1480e−02 | |||
1/80 | 1.1154e−04 | 2.0005 | 2.0062e−01 |
Errors and corresponding observation orders at \(t=1\), \(\lambda =0\)
α | \(\beta _{3}\) | \(\gamma _{3}\) | h = τ | CN-TWSGD | ||
---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | CPU time | ||||
1.2 | −0.042 | −0.065 | 1/10 | 1.1101e−02 | 1.2168e−02 | |
1/20 | 2.5816e−03 | 2.1044 | 1.8096e−02 | |||
1/40 | 6.0446e−04 | 2.0945 | 4.2744e−02 | |||
1/80 | 1.4554e−04 | 2.0542 | 1.8408e−01 | |||
1.4 | −0.093 | −0.09 | 1/10 | 6.5309e−03 | 1.3104e−02 | |
1/20 | 1.4729e−03 | 2.1486 | 1.7784e−02 | |||
1/40 | 3.4402e−04 | 2.0981 | 5.3040e−02 | |||
1/80 | 8.3284e−05 | 2.0464 | 4.2120e−01 | |||
1.6 | −0.1 | −0.062 | 1/10 | 3.9390e−03 | 1.2168e−02 | |
1/20 | 9.5249e−04 | 2.0481 | 1.9344e−02 | |||
1/40 | 2.3672e−04 | 2.0085 | 4.6176e−02 | |||
1/80 | 5.9105e−05 | 2.0018 | 1.8627e−01 | |||
1.8 | −0.055 | −0.009 | 1/10 | 4.6667e−03 | 1.1856e−02 | |
1/20 | 1.1555e−03 | 2.0139 | 2.0592e−02 | |||
1/40 | 2.8821e−04 | 2.0033 | 4.2432e−02 | |||
1/80 | 7.2014e−05 | 2.0008 | 1.9375e−01 |
Errors and corresponding observation orders at \(t=1\), \(\lambda =0\)
α | \(\beta _{3}\) | \(\gamma _{3}\) | h = τ | Proposed | ||
---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | CPU time | ||||
1.2 | −0.042 | −0.065 | 1/10 | 5.4687e−03 | 1.3728e−02 | |
1/20 | 1.2413e−03 | 2.1393 | 2.2152e−02 | |||
1/40 | 2.9794e−04 | 2.0588 | 4.9608e−02 | |||
1/80 | 7.3348e−05 | 2.0222 | 1.9594e−01 | |||
1.4 | −0.093 | −0.09 | 1/10 | 1.4523e−03 | 1.3728e−02 | |
1/20 | 2.8548e−04 | 2.3468 | 2.2776e−02 | |||
1/40 | 6.7785e−05 | 2.0744 | 4.8048e−02 | |||
1/80 | 1.6770e−05 | 2.0151 | 1.8876e−01 | |||
1.6 | −0.1 | −0.062 | 1/10 | 3.3311e−03 | 1.3104e−02 | |
1/20 | 7.7293e−04 | 2.1076 | 1.9968e−02 | |||
1/40 | 1.8976e−04 | 2.0262 | 4.5240e−02 | |||
1/80 | 4.7234e−05 | 2.0063 | 1.9656e−01 | |||
1.8 | −0.055 | −0.009 | 1/10 | 7.5583e−03 | 1.4976e−02 | |
1/20 | 1.8800e−03 | 2.0073 | 2.0904e−02 | |||
1/40 | 4.6938e−04 | 2.0019 | 4.8048e−02 | |||
1/80 | 1.1730e−04 | 2.0006 | 1.8970e−01 |
Errors and corresponding observation orders at \(t=1\), \(\lambda =2\)
α | \(\beta _{3}\) | \(\gamma _{3}\) | h = τ | CN-TWSGD | ||
---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | CPU time | ||||
1.2 | −0.042 | −0.065 | 1/10 | 4.5730e−02 | 1.3416e−02 | |
1/20 | 1.1805e−02 | 1.9537 | 1.6536e−02 | |||
1/40 | 2.9742e−03 | 1.9888 | 4.9608e−02 | |||
1/80 | 7.4490e−04 | 1.9974 | 1.9594e−01 | |||
1.4 | −0.093 | −0.09 | 1/10 | 2.8404e−02 | 1.4040e−02 | |
1/20 | 7.1673e−03 | 1.9866 | 1.9032e−02 | |||
1/40 | 1.7961e−03 | 1.9966 | 5.3352e−02 | |||
1/80 | 4.4950e−04 | 1.9985 | 1.8876e−01 | |||
1.6 | −0.1 | −0.062 | 1/10 | 1.7727e−02 | 1.3728e−02 | |
1/20 | 4.3929e−03 | 2.0127 | 1.9032e−02 | |||
1/40 | 1.0962e−03 | 2.0027 | 4.8672e−02 | |||
1/80 | 2.7415e−04 | 1.9995 | 1.9095e−01 | |||
1.8 | −0.055 | −0.009 | 1/10 | 1.5124e−02 | 1.1544e−02 | |
1/20 | 3.7756e−03 | 2.0021 | 2.0280e−02 | |||
1/40 | 9.4332e−04 | 2.0009 | 4.7424e−02 | |||
1/80 | 2.3587e−04 | 1.9998 | 1.8627e−01 |
Errors and corresponding observation orders at \(t=1\), \(\lambda =2\)
α | \(\beta _{3}\) | \(\gamma _{3}\) | h = τ | Proposed | ||
---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | CPU time | ||||
1.2 | −0.042 | −0.065 | 1/10 | 2.9290e−02 | 1.2792e−02 | |
1/20 | 7.2154e−03 | 2.0213 | 1.9656e−02 | |||
1/40 | 1.8028e−03 | 2.0008 | 4.7112e−02 | |||
1/80 | 4.5156e−04 | 1.9972 | 1.8907e−01 | |||
1.4 | −0.093 | −0.09 | 1/10 | 1.4051e−02 | 1.4664e−02 | |
1/20 | 3.3112e−03 | 2.0852 | 1.9344e−02 | |||
1/40 | 8.3063e−04 | 1.9951 | 4.4928e−02 | |||
1/80 | 2.0919e−04 | 1.9894 | 1.8377e−01 | |||
1.6 | −0.1 | −0.062 | 1/10 | 1.6352e−02 | 1.4040e−02 | |
1/20 | 3.8004e−03 | 2.1052 | 2.0280e−02 | |||
1/40 | 9.3219e−04 | 2.0275 | 4.8672e−02 | |||
1/80 | 2.3242e−04 | 2.0039 | 1.8751e−01 | |||
1.8 | −0.055 | −0.009 | 1/10 | 2.3758e−02 | 1.4976e−02 | |
1/20 | 6.0638e−03 | 1.9701 | 1.8720e−02 | |||
1/40 | 1.5231e−03 | 1.9932 | 5.0544e−02 | |||
1/80 | 3.8119e−04 | 1.9984 | 1.9126e−01 |
Example 3
(cf. [27])
Errors and corresponding observation orders at \(t=1\), \(\gamma _{3}=0\)
α | h = τ | λ = 1/50 | λ = 0 | λ = 2 | |||
---|---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | ||
1.2 | 1/10 | 3.6036e−04 | 3.9643e−04 | 3.8557e−04 | |||
1/20 | 9.3836e−05 | 1.9412 | 9.8756e−05 | 2.0051 | 1.0825e−04 | 1.8326 | |
1/40 | 2.4100e−05 | 1.9611 | 2.4944e−05 | 1.9852 | 2.7754e−05 | 1.9636 | |
1/80 | 6.1263e−06 | 1.9759 | 6.2947e−06 | 1.9865 | 6.9556e−06 | 1.9964 | |
1.5 | 1/10 | 4.8058e−04 | 4.9188e−04 | 2.3030e−04 | |||
1/20 | 1.2712e−04 | 1.9186 | 1.2939e−04 | 1.9266 | 6.1371e−05 | 1.9079 | |
1/40 | 3.2771e−05 | 1.9557 | 3.3285e−05 | 1.9588 | 1.5816e−05 | 1.9562 | |
1/80 | 8.3331e−06 | 1.9755 | 8.4560e−06 | 1.9768 | 4.0057e−06 | 1.9813 | |
1.8 | 1/10 | 5.0678e−04 | 5.1402e−04 | 1.7371e−04 | |||
1/20 | 1.3156e−04 | 1.9456 | 1.3326e−04 | 1.9476 | 4.5103e−05 | 1.9454 | |
1/40 | 3.3388e−05 | 1.9783 | 3.3800e−05 | 1.9791 | 1.1761e−05 | 1.9392 | |
1/80 | 8.4106e−06 | 1.9890 | 8.5114e−06 | 1.9896 | 3.0136e−06 | 1.9645 |
Example 4
\(\gamma _{3}=0\), \(\alpha =1.5\), \(\lambda =3\), the change in particle concentration \(u(x,t)\) at different times
\(\gamma _{3}=0\), \(\alpha =1.5\), \(\lambda =0\), the change in particle concentration \(u(x,t)\) at different times
Errors and corresponding observation orders at \(t=1\), \(\gamma _{3}=0\)
α | h = τ | λ = 2 | λ = 3 | λ = 5 | |||
---|---|---|---|---|---|---|---|
\(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | \(\|e\|_{L_{2}}\) | Order | ||
1.2 | 1/10 | 4.4064e−03 | 7.3432e−03 | 1.3289e−02 | |||
1/20 | 1.4170e−03 | 1.6368 | 2.3874e−03 | 1.6210 | 4.6713e−03 | 1.5083 | |
1/40 | 4.4624e−04 | 1.6669 | 7.1388e−04 | 1.7417 | 1.3593e−03 | 1.7810 | |
1/80 | 1.4351e−04 | 1.6367 | 2.1251e−04 | 1.7482 | 3.7612e−04 | 1.8536 | |
1.5 | 1/10 | 2.7871e−04 | 6.9236e−04 | 2.1027e−03 | |||
1/20 | 9.6202e−05 | 1.5346 | 2.3030e−04 | 1.5880 | 7.2237e−04 | 1.5414 | |
1/40 | 3.1225e−05 | 1.6234 | 7.2323e−05 | 1.6710 | 2.3189e−04 | 1.6393 | |
1/80 | 1.0186e−05 | 1.6161 | 2.1899e−05 | 1.7236 | 6.6164e−05 | 1.8093 | |
1.8 | 1/10 | 2.6714e−04 | 2.7940e−04 | 3.2526e−04 | |||
1/20 | 3.7920e−05 | 2.8166 | 3.7952e−05 | 2.8801 | 3.9166e−05 | 3.0539 | |
1/40 | 5.2055e−06 | 2.8649 | 5.1329e−06 | 2.8863 | 5.0821e−06 | 2.9461 | |
1/80 | 7.0658e−07 | 2.8811 | 6.9299e−07 | 2.8889 | 6.8096e−07 | 2.8998 |
6 Conclusion
In this paper, a class of second-order tempered difference operators for the left and right Riemann–Liouville tempered fractional derivatives is constructed, and then a class of second-order numerical methods is presented for solving the space tempered fractional diffusion equation. Numerical schemes are proved to be unconditionally stable and convergent theoretically and are verified to be effective by numerical experiments.
Notes
Acknowledgements
The authors would like to express their thanks to the anonymous referees for their valuable comments and suggestions.
Availability of data and materials
The authors declare that all data and material in the paper are available and veritable.
Authors’ contributions
Both authors contributed equally and significantly in writing this article. Both authors wrote, read, and approved the final manuscript.
Funding
This work is supported by the National Science Foundation of China (No. 11671343) and the Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2018WK4006).
Competing interests
The authors declare that they have no competing interests.
References
- 1.Baeumer, B., Meerschaert, M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010) MathSciNetCrossRefGoogle Scholar
- 2.Çelik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 120, 270–286 (2017) MathSciNetCrossRefGoogle Scholar
- 3.Dehghan, M., Abbaszadeh, M.: Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl. Numer. Math. 119, 51–66 (2017) MathSciNetCrossRefGoogle Scholar
- 4.Dehghan, M., Abbaszadeh, M.: An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch–Torrey equations. Appl. Numer. Math. 131, 190–206 (2018) MathSciNetCrossRefGoogle Scholar
- 5.Dehghan, M., Abbaszadeh, M.: A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Appl. 75, 2903–2914 (2018) MathSciNetCrossRefGoogle Scholar
- 6.Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017) MathSciNetCrossRefGoogle Scholar
- 7.Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26(2), 448–479 (2010) MathSciNetzbMATHGoogle Scholar
- 8.Deng, W., Zhang, Z.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73, 1063–1076 (2017) MathSciNetCrossRefGoogle Scholar
- 9.Hanert, E., Piret, C.: A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Sci. Comput. 36, A1797–A1812 (2014) MathSciNetCrossRefGoogle Scholar
- 10.Heydari, M., Hooshmandasl, M., Ghaini, F., Cattani, C.: Wavelets method for the time fractional diffusion-wave equation. Phys. Lett. A 379(3), 71–76 (2015) MathSciNetCrossRefGoogle Scholar
- 11.Hooshmandasl, M., Heydari, M., Cattani, C.: Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions. Eur. Phys. J. Plus 131(8), 268 (2016) CrossRefGoogle Scholar
- 12.Hu, D., Cao, X.: The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term. Adv. Differ. Equ. 2019, 66 (2019) MathSciNetCrossRefGoogle Scholar
- 13.Hu, D., Cao, X.: A fourth-order compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. Int. J. Comput. Math. (2019). https://doi.org/10.1080/00207160.2019.1671587 CrossRefGoogle Scholar
- 14.Li, C., Deng, W.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42, 543–572 (2016) MathSciNetCrossRefGoogle Scholar
- 15.Meerschaert, M., Sabzikar, F.: Stochastic integration for tempered fractional Brownian motion. Stoch. Process. Appl. 124, 2363–2387 (2014) MathSciNetCrossRefGoogle Scholar
- 16.Moghaddam, B., Machado, J., Babaei, A.: A computationally efficient method for tempered fractional differential equations with application. Comput. Appl. Math. 37, 3657–3671 (2018) MathSciNetCrossRefGoogle Scholar
- 17.Morgado, M., Rebelo, M.: Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20, 1239–1262 (2017) MathSciNetCrossRefGoogle Scholar
- 18.Qu, W., Liang, Y.: Stability and convergence of the Crank–Nicolson scheme for a class of variable-coefficient tempered fractional diffusion equations. Adv. Differ. Equ. 2017, 108 (2017) MathSciNetCrossRefGoogle Scholar
- 19.Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2010) zbMATHGoogle Scholar
- 20.Rall, L.: Perspectives on automatic differentiation: past, present, and future? In: Automatic Differentiation: Applications, Theory, and Implementations, pp. 1–14. Springer, Berlin (2006) Google Scholar
- 21.Sabzikar, F., Meerschaert, M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015) MathSciNetCrossRefGoogle Scholar
- 22.Sun, X., Zhao, F., Chen, S.: Numerical algorithms for the time-space tempered fractional Fokker–Planck equation. Adv. Differ. Equ. 2017, 259 (2017) MathSciNetCrossRefGoogle Scholar
- 23.Varga, R.: Matrix Iterative Analysis. Springer, Berlin (2009) zbMATHGoogle Scholar
- 24.Yu, Y., Deng, W., Wu, Y.: High-order quasi-compact difference schemes for fractional diffusion equations. Commun. Math. Sci. 15, 1183–1209 (2017) MathSciNetCrossRefGoogle Scholar
- 25.Yu, Y., Deng, W., Wu, Y., Wu, J.: Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112, 126–145 (2017) MathSciNetCrossRefGoogle Scholar
- 26.Zhang, H., Liu, F., Turner, I., Chen, S.: The numerical simulation of the tempered fractional Black–Scholes equation for European double barrier option. Appl. Math. Model. 40, 5819–5834 (2016) MathSciNetCrossRefGoogle Scholar
- 27.Zhang, Y., Li, Q., Ding, H.: High-order numerical approximation formulas for Riemann–Liouville (Riesz) tempered fractional derivatives: construction and application (I). Appl. Math. Comput. 329, 432–443 (2018) MathSciNetCrossRefGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.