The new exact solitary wave solutions and stability analysis for the \((2+1)\)-dimensional Zakharov–Kuznetsov equation
- 129 Downloads
Abstract
In this paper, a new generalized exponential rational function method is employed to extract new solitary wave solutions for the Zakharov–Kuznetsov equation (ZKE). The ZKE exhibits the behavior of weakly nonlinear ion-acoustic waves in incorporated hot isothermal electrons and cold ions in the presence of a uniform magnetic field. Furthermore, the stability for the governing equations is investigated via the aspect of linear stability analysis. Numerical simulations are made to shed light on the characteristics of the obtained solutions.
Keywords
ZKE GERFM Exact solitary wave solutions Stability analysis1 Introduction
Nonlinear evolution equations (NLEEs) have been very important aspects owing to their very wide range of applicability in nonlinear science. In science nonlinear physical phenomena are one of the most significant areas of study and they appear in various fields of science and engineering, such as plasma physics, fluid mechanics, gas dynamics, elasticity, relativity, chemical reactions, ecology, optical fiber, solid state physics, biomechanics, to mention few. All these equations are fundamentally controlled by NLEEs [1, 2, 3, 4, 5, 6]. NLEEs are often used to illustrate the motion of separated waves. Ever since the arrival of solitary wave in scientific work, it has been getting more concentration. Thus, it is vital to extract exact traveling wave solutions to NLEEs. This is because obtaining exact solutions to NLEEs gives us the liberty to present information on the characteristics of a complex physical phenomenon. Thus, the construction of exact traveling wave solutions to NLEEs has become a priority in the analysis of nonlinear physical phenomenon. A lot of analytical approaches have been used to establish traveling wave solutions for NLEEs [7, 8, 9, 10, 11, 12, 13]. On solitons, nonlinear physical phenomena and other novel solutions of NLEEs, there has been a variety of theoretical work [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
2 Description of the GERFM
The GERFM may be described as follows [25]:
Step 3. Plugging (2.4) into Eq. (2.2) and organizing all terms yield the polynomial equation \(P(e^{q_{1} \xi},e^{q_{2} \xi},e^{q_{3} \xi},e^{q_{4} \xi})=0\). Equating every coefficient of P to zero, a set of algebraic equations for \(p_{n}, q_{n}(1 \leq n \leq4)\), and \(k, m, \omega, A_{0},A_{1},B_{1}\) will be derived with the help of Maple.
Step 4. Solving the outcomes in Step 3 and then putting non-trivial solutions in (2.4), we obtain the soliton solutions of Eq. (1.1).
3 Application of GERFM to ZK
- Case 1:Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu B_{{2}}}}{6 \sqrt{-\delta-1}}},\qquad \omega=\frac{4}{3} \mu kB_{{2}}, \\ &A_{{0}}=2 B_{{2}},\qquad A_{{1} }=0,\qquad A_{{2}}=B_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=B_{{2}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{1} (x,y,t ) = {\frac{B_{{2}}}{ \cos^{2} ( \xi ) \sin^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu B_{{2}}}}{6 \sqrt{-\delta-1}}} y - \frac{4}{3} \mu kB_{{2}} t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad \omega=\omega,\qquad A_{{0}}=-{ \frac{\omega}{k\mu}},\\ & A_{{ 1}}=0,\qquad A_{{2}}=- { \frac{3\omega}{k\mu}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{2} (x,y,t )= {\frac{ ( 2 \cos^{2} ( \xi ) -3 ) \omega}{ k\mu\cos^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 3:Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu B_{{2}}}}{6 \sqrt{-\delta-1}}},\qquad \omega=-\frac{1}{3} \mu kB_{{2}}, \\ &A_{{0}}=\frac{1}{3} B_{{2}},\qquad A_{ {1}}=0,\qquad A_{{2}}=0,\qquad B_{{1}}=0,\qquad B_{{2}}=B_{{2}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{3} (x,y,t )= {\frac{ ( 2 \cos^{2} ( \xi ) + 1 ) B_{{2}}}{ 3 \sin^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu B_{{2}}}}{6 \sqrt{-\delta-1}}},\qquad \omega=-\frac{1}{3} \mu kB_{{2}} y +\frac{1}{3} \mu kB_{{2}} t. $$
- Case 4:Putting these results in Eqs. (3.3) and (3.4), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}+\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad \omega=\omega,\qquad A_{{0}}={\frac{3 \omega}{k\mu}}, \\ &A_{{1}}=0,\qquad A_{{2}}={\frac{3 \omega}{k\mu}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{4} (x,y,t )= {\frac{3 \omega}{k\mu \cos^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}+\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.5), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{3}\sqrt{12 {k}^{2}-A_{{1}}\mu}}{6 \sqrt{-\delta-1}}},\qquad \omega=\frac{1}{ 6} \mu kA_{{1}}, \\ &A_{{0}}=-\frac{2}{3} A_{{1}},\qquad A_{ {1}}=A_{{1}},\qquad A_{{2}}=- \frac{1}{2} A_{{1}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{5} (x,y,t )= {\frac{ ( 2 \cos^{2} ( \xi ) - 3 ) A_{{1}}}{6 \cos^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{3}\sqrt{12 {k}^{2}-A_{{1}}\mu}}{6 \sqrt{-\delta-1}}} y - \frac{1}{ 6} \mu kA_{{1}} t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.5), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}+\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad\omega=\omega, \\ &A_{{0}}={\frac{6 \omega}{k\mu}},\qquad A_{{1}}=0,\qquad A_{{2}}=0,\qquad B_{{1}}=-{ \frac{12 \omega}{k\mu}},\qquad B_{{2}}={ \frac{12 \omega}{k\mu}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{6} (x,y,t )= -{\frac{6 \omega}{k\mu ( 2 \sin ( \xi ) \cos ( \xi ) -1 ) }} , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}+\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 3:Putting these results in Eqs. (3.3) and (3.5), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad \omega=\omega, \\ &A_{{0}}=-{\frac{4 \omega}{k\mu}},\qquad A _{{1}}=0,\qquad A_{{2}}=0,\qquad B_{{1}}={ \frac{12 \omega}{k\mu}},\qquad B_{{2}}=-{ \frac{12 \omega}{k\mu}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{7} (x,y,t )= {\frac{4 \omega ( \sin ( \xi ) \cos ( \xi ) +1 ) }{k\mu ( 2 \sin ( \xi ) \cos ( \xi ) -1 ) }} , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.6), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=\frac{1}{ 6} \sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) { m}^{2}},\qquad m=m,\\ & \omega=-\frac{2}{9} \mu A_{{2}}\sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) {m}^{2}}, \\ &A_{{0}}=-2 A_{{2}},\qquad A_{{1}}=0,\qquad A_{{2} }=A_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=A_{{2}} . \end{aligned}$$where$$\phi_{8} (x,y,t )= {\frac{A_{{2}}}{ \cosh^{2} ( \xi ) \sinh^{2} ( \xi ) }} , $$$$\xi= \frac{1}{ 6} \sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) { m}^{2}} x + m y +\frac{2}{9} \mu A_{{2}}\sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) {m}^{2}} t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.6), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=\frac{1}{ 6} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) { m}^{2}},\qquad m=m,\\ & \omega=\frac{1}{18} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) {m}^{2}}\mu B_{{2}}, \\ &A_{{0}}=-\frac{1}{3} B_{{2}},\qquad A_{{1}}=0,\qquad A_{{2}}=0 ,\qquad B_{{1}}=0,\qquad B_{{2}}=B_{{2}} . \end{aligned}$$where$$\phi_{9} (x,y,t )= - {\frac{B_{{2}} ( \tanh^{2} ( \xi ) -3 ) }{ 3 \tanh^{ 2} ( \xi ) }} , $$$$\xi= \frac{1}{ 6} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) { m}^{2}} x + m y - \frac{1}{18} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) {m}^{2}}\mu B_{{2}} t. $$
- Case 3:Putting these results in Eqs. (3.3) and (3.7), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=\frac{1}{ 6} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) { m}^{2}},\qquad m=m,\\ & \omega=-\frac{1}{18} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) {m}^{2}}\mu B_{{2}}, \\ &A_{{0}}=-B_{{2}},\qquad A_{{1}}=0,\qquad A_{{2}}=0,\qquad B_{ {1}}=0,\qquad B_{{2}}=B_{{2}} . \end{aligned}$$where$$\phi_{10} (x,y,t )= {\frac{B_{{2}}}{ \sinh^{2} ( \xi ) }} , $$$$\xi= \frac{1}{ 6} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) { m}^{2}} x + m y +\frac{1}{18} \sqrt{-6 \mu B_{{2}}-36 ( \delta+1 ) {m}^{2}}\mu B_{{2}} t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.7), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta- 1}}},\qquad \omega=\frac{1}{12} \mu kA_{{2}}, \\ &A_{{0}}={\frac{37 A_{{ 2}}}{6}},\qquad A_{{1}}=5 A_{{2}},\qquad A_{{2}}=A_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{11} (x,y,t )= - {\frac{A_{{2}} ( -{\mathrm{ e}^{2 \xi}}+4 {\mathrm{ e}^{\xi}}-1 ) }{ 6 ( 1+{\mathrm{ e}^{\xi}} ) ^{2}}} , $$$$\xi= k x -{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta- 1}}} y - \frac{1}{12} \mu kA_{{2}} t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.7), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{{k}^{3}-2 \omega}}{\sqrt{k}\sqrt{ -\delta-1}}},\qquad\omega=\omega, \\ &A_{{0}}=-{\frac{72 \omega}{\mu k}},\qquad A_{{1} }=0,\qquad A_{{2}}=0,\qquad B_{{1}}=-{ \frac{360 \omega}{\mu k}},\qquad B_{{2}}=-{ \frac{432 \omega}{\mu k}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{12} (x,y,t )= {\frac{72 \omega{\mathrm{ e}^{\xi}}}{\mu k ( 2 {\mathrm{ e}^{\xi}}+ 3 ) ^{2}}} , $$$$\xi= k x -{\frac{ \sqrt{{k}^{3}-2 \omega}}{\sqrt{k}\sqrt{ -\delta-1}}} y - \omega t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.8), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad\omega=\omega, \\ &A_{{0}}=-{\frac{9 \omega}{\mu k}} ,\qquad A_{{1}}=0,\qquad A_{{2}}=0,\qquad B_{{1}}=-{ \frac{36 \omega}{\mu k}},\qquad B_{{2}}=- {\frac{27 \omega}{\mu k}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{13} (x,y,t )= {\frac{ 9 \omega}{k\mu ( 5 \cosh^{2} ( \xi ) +4 \cosh ( \xi ) \sinh ( \xi ) -1 ) }} , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.8), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}+\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad \omega=\omega, \\ &A_{{0}}={\frac{11 \omega}{\mu k}} ,\qquad A_{{1}}=0,\qquad A_{{2}}=0,\qquad B_{{1}}={ \frac{36 \omega}{\mu k}},\qquad B_{{2}}= {\frac{27 \omega}{\mu k}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{14} (x,y,t )= {\frac{\omega ( 18 \cosh^{4} ( \xi ) -33 \cosh^{2} ( \xi ) +36 \cosh ( \xi ) \sinh ( \xi ) +11 ) }{k\mu ( 3 \cosh^{2} ( \xi ) +1 ) ^{ 2}}} , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}+\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.9), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} & k=\frac{1}{ 6} \sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) { m}^{2}},\qquad m=m,\\ & \omega=\frac{2}{9} \mu A_{{2}}\sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) {m}^{2}}, \\ &A_{{0}}=\frac{2}{3} A_{{2}},\qquad A_{{1}}=0,\qquad A_{{2 }}=A_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=A_{{2}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{15} (x,y,t )= {\frac{A_{{2}} ( 3 \operatorname{coth}^{4} (\xi ) +2 \operatorname{coth}^{2} (\xi ) +3 ) }{ {3} \operatorname{coth} ^{2} (\xi ) }} , $$$$\xi= \frac{1}{ 6} \sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) { m}^{2}} x + m y - \frac{2}{9} \mu A_{{2}}\sqrt{-6 \mu A_{{2}}-36 ( \delta+1 ) {m}^{2}} t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.9), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}},\qquad\omega=\omega, \\ &A_{{0}}={\frac{3 \omega}{k\mu}},\qquad A_{{1}}=0,\qquad A_{{2}}=0,\qquad B_{{1}}=0,\qquad B_{{2}}=-{ \frac{3 \omega}{k\mu}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{16} (x,y,t )= {\frac{3 \omega}{k\mu\cosh^{2} ( \xi ) } } , $$$$\xi= k x -{\frac{ \sqrt{2}\sqrt{2 {k}^{3}-\omega}}{2\sqrt{k }\sqrt{-\delta-1}}} y - \omega t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.10), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{{k}^{3}+2 \omega}}{\sqrt{k}\sqrt{ -\delta-1}}},\qquad \omega=\omega, \\ &A_{{0}}={\frac{26 \omega}{k\mu}},\qquad A_{{1}}=0 ,\qquad A_{{2}}=0,\qquad B_{{1}}={ \frac{72 \omega}{k\mu}},\qquad B_{{2}}={\frac{48 \omega}{k\mu}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{17} (x,y,t )= {\frac{2 \omega ( {\mathrm{ e}^{2 \xi}}-8 {\mathrm{ e}^{\xi}}+4 ) }{k\mu ( {\mathrm{ e}^{\xi}}+2 ) ^{2}}} , $$$$\xi= k x -{\frac{ \sqrt{{k}^{3}+2 \omega}}{\sqrt{k}\sqrt{ -\delta-1}}} y - \omega t. $$
- Case 2:Putting these results in Eqs. (3.3) and (3.10), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{{k}^{3}-2 \omega}}{\sqrt{k}\sqrt{ - \delta-1}}},\qquad \omega=\omega, \\ &A_{{0}}=-{\frac{24 \omega}{k\mu}},\qquad A_{{1}}=0 ,\qquad A_{{2}}=0,\qquad B_{{1}}=-{ \frac{72 \omega}{k\mu}},\qquad B_{{2}}=-{\frac{48 \omega}{k\mu}} . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{18} (x,y,t )= {\frac{24 \omega{\mathrm{ e}^{\xi}}}{k\mu ( {\mathrm{ e}^{\xi}}+2 ) ^{2}}} , $$$$\xi= k x -{\frac{ \sqrt{{k}^{3}-2 \omega}}{\sqrt{k}\sqrt{ - \delta-1}}} y - \omega t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.11), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta-1}}},\qquad \omega=\frac{1}{3} \mu kA_{{2}}, \\ &A_{{0}}=\frac{2}{3} A_{{2}},\qquad A_{{ 1}}=-2 A_{{2}},\qquad A_{{2}}=A_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{19} (x,y,t )= {\frac{ ( 2 \cosh^{2} ( \xi ) -3 ) A_{{2}}}{3 \cosh^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta-1}}} y - \frac{1}{3} \mu kA_{{2}} t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.12), the exact solution of Eq. (1.1) is obtained:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta-1}}},\qquad \omega=-\frac{1}{3} \mu kA_{{2}}, \\ &A_{{0}}=\frac{4}{3} A_{{2}},\qquad A_{ {1}}=2 A_{{2}},\qquad A_{{2}}=A_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{20} (x,y,t )= {\frac{ ( 2 \cos^{2} ( \xi ) + 1 ) A_{{2}}}{3 \sin^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta-1}}} y +\frac{1}{3} \mu kA_{{2}} t. $$
- Case 1:Putting these results in Eqs. (3.3) and (3.13), the exact solution of Eq. (1.1) is obtained and the physical features of some of the solutions are depicted in Figs. 1 to 5:$$\begin{aligned} &k=k,\qquad m=-{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta-1}}},\qquad \omega=\frac{1}{3} \mu kA_{{2}}, \\ &A_{{0}}=\frac{2}{3} A_{{2}},\qquad A_{{ 1}}=-2 A_{{2}},\qquad A_{{2}}=A_{{2}},\qquad B_{{1}}=0,\qquad B_{{2}}=0 . \end{aligned}$$where, for \(\delta<-1\), we have$$\phi_{21} (x,y,t )= {\frac{ ( 2 \cosh^{2} ( \xi ) +1 ) A_{{2}}}{ 3 \sinh^{2} ( \xi ) }} , $$$$\xi= k x -{\frac{ \sqrt{6}\sqrt{6 {k}^{2}+\mu A_{{2}}}}{6 \sqrt{-\delta-1}}} y - \frac{1}{3} \mu kA_{{2}} t. $$Figure 1
3D plot for \(\phi_{8}\) at \(y=1\) with \(A_{2}=\mu=\delta=1\) and 2D at \(t=0\)
Figure 23D plot for \(\phi_{8}\) at \(y=1\) with \(B_{2}=\mu=\delta=1\) and 2D at \(t=0\)
Figure 33D plot for \(\phi_{13}\) at \(y=1\) with \(\sigma=\mu=k=\delta=1\) and 2D at \(t=0\)
Figure 43D plot for \(\phi_{16}\) at \(y=1\) with \(\sigma=\mu=k=\delta=1\) and 2D at \(t=0\)
Figure 53D plot for \(\phi_{20}\) at \(y=1\) with \(A_{2}=k=\delta=1\) and 2D at \(t=0\)
4 Stability analysis of Eq. (1.1)
Frequency of the perturbation against the wave number when \(P_{0}<0\) and \(P_{0}>0\), respectively
5 Conclusion
This research applied GERFM to extracting new solitary wave solutions for the ZK equation. The ZK equation exhibits the behavior of weakly nonlinear ion-acoustic waves incorporating hot isothermal electrons and cold ions in the presence of a uniform magnetic field. There have not been a lot of studies on this special form (1.1) of the ZK equation in the literature. Owing to this, it is of great importance to establish different types of solutions to this equation. We successfully obtained solutions such as exact solutions, exact periodic wave solutions, soliton solutions and exponential function solutions. GERFM has the capacity to generate several types of solutions in different form unlike some of the classic methods that could only generate a small number of solutions. Thus, GERFM is very efficient and effective in extracting new types of solutions to varieties of NLEEs. Graphical features of some of the obtained solutions are presented in order to shed more light on the characteristics of the obtained solutions. Furthermore, the stability of the governing equations was investigated via a linear stability analysis.
Notes
Acknowledgements
The authors are grateful to the anonymous reviewers for their valuable feedback to improve the quality of the present paper.
Authors’ contributions
All authors participated equally to reach the final version of the paper. All authors read and approved the final version of the manuscript.
Funding
Not applicable.
Competing interests
The authors declare that they have no competing interests.
References
- 1.Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
- 2.Tchier, F., Aliyu, A.I., Yusuf, A., Inc, M.: Dynamics of solitons to the ill-posed Boussinesq equation. Eur. Phys. J. Plus 132, 136 (2017) CrossRefGoogle Scholar
- 3.Tchier, F., Yusuf, A., Aliyu, A.I., Inc, M.: Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstruct. 107, 320 (2017) CrossRefGoogle Scholar
- 4.Ma, W.X.: A soliton hierarchy associated with so(3,R). Appl. Math. Comput. 220, 117 (2013) MathSciNetzbMATHGoogle Scholar
- 5.Dodd, R., Eilbeck, J., Gibbon, J., Morris, H.: Solitons and Nonlinear Wave Equations. Academic Press, San Diego (1988) zbMATHGoogle Scholar
- 6.Zabusky, N.: A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction. Academic Press, San Diego (1967) zbMATHGoogle Scholar
- 7.He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26(3), 695–700 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19, 4 (2004) MathSciNetCrossRefGoogle Scholar
- 9.Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994) zbMATHCrossRefGoogle Scholar
- 10.Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4(4), 903–909 (2013) CrossRefGoogle Scholar
- 11.Khan, K., Akbar, M.A.: Traveling wave solutions of the \((2+1)\)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method. Ain Shams Eng. J. 5(1), 247–256 (2014) Google Scholar
- 12.Bekir, A., Boz, A.: Exact solutions for nonlinear evolution equation using Exp-function method. Phys. Lett. A 372, 1619–1625 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Roshid, H.O., Rahman, N., Akbar, M.A.: Traveling waves solutions of nonlinear Klein Gordon equation by extended (G/G)-expansion method. Ann. Pure Appl. Math. 3, 10–16 (2013) Google Scholar
- 14.Osman, M.S., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q.: The unified method for conformable time fractional Schrodinger equation with perturbation terms. Chin. J. Phys.. 56(5), 2500–2506 (2018) MathSciNetCrossRefGoogle Scholar
- 15.Korkmaz, A.: Complex wave solutions to mathematical biology models I: Newell–Whitehead–Segel and Zeldovich equations. J. Comput. Nonlinear Dyn. 13(8), 081004 (2017) CrossRefGoogle Scholar
- 16.Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Travelling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quantum Electron. 50(150), 1–13 (2018) Google Scholar
- 17.Korkmaz, A., Hosseini, K.: Exact solutions of a nonlinear conformable time fractional parabolic equation with exponential nonlinearity using reliable methods. Opt. Quantum Electron. 49(278), 1–10 (2017) Google Scholar
- 18.Liu, W., Liu, M., Han, H., Fang, S., Teng, H., Lei, M., Wei, Z.: Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photo. Res. 6(10), C15–C21 (2018) CrossRefGoogle Scholar
- 19.Liu, M., OuYang, Y., Hou, H., Lei, M., Liu, W., Wei, Z.: MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser. Chin. Phys. B 27(8), 084211 (2018) CrossRefGoogle Scholar
- 20.Liu, W., Liu, M., OuYang, Y., Hou, H., Lei, M., Wei, Z.: CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 29(39), 394002 (2018) CrossRefGoogle Scholar
- 21.Zhang, Y., Yang, C., Yu, W., Mirzazadeh, M., Zhou, Q., Liu, W.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351–1360 (2018) CrossRefGoogle Scholar
- 22.Liu, X., Triki, H., Zhou, Q., Liu, W., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94, 703–709 (2018) CrossRefGoogle Scholar
- 23.Yu, W., Ekici, M., Mirzazadeh, M., Zhou, Q., Liu, W.: Periodic oscillations of dark solitons in nonlinear optics. Optik 165, 341–344 (2018) CrossRefGoogle Scholar
- 24.Guo, H., Zhang, X., Ma, G., Zhang, X., Yang, C., Zhou, Q., Liu, W.: Analytic study on interactions of some types of solitary waves. Optik 164, 132–137 (2018) CrossRefGoogle Scholar
- 25.Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 133, 1–19 (2018) CrossRefGoogle Scholar
- 26.Wazwaz, A.M.: The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13, 1039 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Ma, H.-C., Yu, Y.-D., Ge, D.-J.: The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58, 2523–2527 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Zhang, B.G., Liu, Z.R., Xiao, Q.: New exact solitary wave and multiple soliton solutions of quantum Zakharov–Kuznetsov equation. Appl. Math. Comput. 217(1), 392–402 (2010) MathSciNetzbMATHGoogle Scholar
- 29.Seadawy, A.R.: Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67(1), 172–180 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Adem, A.R., Muatjetjeja, B.: Conservation laws and exact solutions for a 2D Zakharov–Kuznetsov equation. Appl. Math. Lett. 48, 109–117 (2015) MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Kuo, C.-K.: The new exact solitary and multi-soliton solutions for the \((2+1)\)-dimensional Zakharov–Kuznetsov equation. Comput. Math. Appl. (2018). https://doi.org/10.1016/j.camwa.2018.01.014 MathSciNetGoogle Scholar
- 32.Ahmed, B.S., Zerrad, E., Biswas, A.: Kinks and domain walls of the Zakharov–Kuznetsov equation in plasmas. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 14(4), 281–286 (2013) MathSciNetGoogle Scholar
- 33.Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Soliton and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87(5), 455–463 (2013) CrossRefGoogle Scholar
- 34.Biswas, A., Song, M.: Soliton solution and bifurcation analysis of the Zakharov–Kuznetsov–Benjamin–Bona–Mahoney equation with power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1676–1683 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Biswas, A., Zerrad, E.: Solitary wave solution of the Zakharov–Kuznetsov equation in plasmas with power law nonlinearity. Nonlinear Anal., Real World Appl. 11(4), 3272–3274 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Ebadi, G., Mojaver, A., Milovic, D., Johnson, S., Biswas, A.: Solitons and other solutions to the quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 341(2), 507–513 (2012) zbMATHCrossRefGoogle Scholar
- 37.Krishnan, E.V., Zhou, Q., Biswas, A.: Solitons and shock waves to Zakharov–Kuznetsov equation with dual-power law nonlinearity in plasmas. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 17(2), 137–143 (2016) MathSciNetGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.