Boundary Value Problems

, 2018:47 | Cite as

Reconstruction of the Volterra-type integro-differential operator from nodal points

Open Access


In this work, the Sturm–Liouville problem perturbated by a Volterra-type integro-differential operator is studied. We give a uniqueness theorem and an algorithm to reconstruct the potential of the problem from nodal points (zeros of eigenfunctions).


Sturm–Liouville equation Inverse nodal problem Integro-differential equation 


34A55 34B07 34B24 34B37 34K29 34K10 47G20 

1 Introduction

We consider the boundary value problem L generated by the convolution-type Sturm–Liouville integro-differential operator
$$ -y^{\prime\prime}+q(x)y+ \int_{0}^{x}M(x,t)y^{\prime}(t)\,dt=\lambda y,\quad x\in(0,\pi) $$
with boundary conditions
$$\begin{aligned}& y^{\prime}(0)-hy(0)=0, \end{aligned}$$
$$\begin{aligned}& y^{\prime}(\pi)+Hy(\pi)=0 \end{aligned}$$
and with the discontinuity conditions
$$ \left \{ \textstyle\begin{array}{l} y(\frac{\pi}{2}+0)=\alpha y(\frac{\pi}{2}-0) ,\\ y^{\prime}(\frac{\pi}{2}+0)=\alpha^{-1}y^{\prime}(\frac{\pi}{2}-0) , \end{array}\displaystyle \right . $$
where λ is the spectral parameter; α is a positive real constant; \(q(x)\) and \(M(x,t)\) are real-valued functions from the class \(L_{2}(0,\pi)\) and \(W_{2}^{1}(0,\pi)\), respectively. Without loss of generality, we assume that \(\int_{0}^{\pi} ( q(x)+M(x,x) ) \,dx=0\).

The first result of the inverse nodal Sturm–Liouville problem was given by McLaughlin in [1]. In this work, she proved that the potential of the considered problem can be uniquely determined by a given dense subset of the zeros of the eigenfunctions called nodal points. In 1989, Hald and McLaughlin studied more general boundary conditions and gave some numerical schemes for the reconstruction of the potential from a given dense subset of nodal points [2]. Yang provided an algorithm to determine the coefficients of the Sturm–Liouville problem by using the given nodal points in [3]. Inverse nodal problems for different types of operators have been extensively well studied in several papers (see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and [15]).

Inverse problems for integro-differential operators and the other classes of nonlocal operators are more difficult to investigate. The classical methods are often not applicable for such problems. In present, the studies concerning the perturbation of a differential operator by a Volterra-type integral operator, namely the integro-differential operator, continue to be performed and are beginning to have a significant place in the literature (see [16, 17, 18, 19, 20, 21], and [22]). Inverse nodal problem for this type of operator was first discussed by [23]. It is shown in this study that the potential function can be determined by using nodal points, while the coefficient of the integral operator is known. The inverse nodal problem for Dirac-type integro-differential operators was first investigated by [24]. In this work, it is shown that the coefficients of the differential part of the operator can be determined by using nodal points, and nodal points also give partial information about the integral part.

In the present paper we investigate the inverse nodal problem for Volterra-type integro-differential operator. This type of operator has previously been addressed in [25] and [26].

2 Preliminaries

Let \(\varphi(x,\lambda)\) be the solution of (1) with the initial conditions
$$ \varphi(0,\lambda)=1,\qquad\varphi^{\prime}(0,\lambda)=h $$
and the jump conditions (4).
We have the following integral equations of the solution of (1): for \(x<\frac{\pi}{2}\),
$$ \begin{aligned}[b] \varphi(x,\lambda) ={}&\cos\sqrt{\lambda}x+h\frac{\sin\sqrt{\lambda }x}{\sqrt{\lambda}}+ \int_{0}^{x}\frac{\sin\sqrt{\lambda} ( x-t ) }{\sqrt{\lambda}}q(t)\varphi(t,\lambda) \,dt \\ &+ \int_{0}^{x}\frac{\sin\sqrt{\lambda} ( x-t ) }{\sqrt {\lambda}}\int_{0}^{t}M(t,\tau)\varphi^{\prime}(\tau, \lambda)\,d\tau\,dt; \end{aligned} $$
for \(x>\frac{\pi}{2}\),
$$ \begin{aligned}[b] \varphi(x,\lambda) ={}&\alpha^{+}\cos\sqrt{\lambda}x+ \alpha^{-}\cos \sqrt{\lambda}(\pi-x) \\ &+\frac{h}{\sqrt{\lambda}} \bigl[ \alpha^{+}\sin\sqrt{\lambda}x+\sin \sqrt{ \lambda}(\pi-x) \bigr] \\ &+ \int_{0}^{\pi/2} \biggl[ \alpha^{+} \frac{\sin\sqrt{\lambda} ( x-t ) }{\sqrt{\lambda}}+\alpha^{-}\frac{\sin\sqrt{\lambda}(\pi -x-t)}{2\sqrt{\lambda}} \biggr] q(t)\varphi(t, \lambda)\,dt \\ &+ \int_{0}^{\pi/2} \int_{0}^{t} \biggl[ \alpha^{+} \frac{\sin\sqrt {\lambda} ( x-t ) }{\sqrt{\lambda}}+\alpha^{-}\frac{\sin\sqrt {\lambda}(\pi-x-t)}{2\sqrt{\lambda}} \biggr] M(t,\tau) \varphi^{\prime}(\tau ,\lambda)\,d\tau\,dt \\ &+ \int_{\pi/2}^{x}{}^{+}\frac{\sin\sqrt{\lambda} ( x-t ) }{ \sqrt{\lambda}}q(t) \varphi(t,\lambda)\,dt \\ &+ \int_{\pi/2}^{x} \int_{0}^{t}\frac{\sin\sqrt{\lambda} ( x-t ) }{\sqrt{\lambda}}M(t,\tau) \varphi^{\prime}(\tau,\lambda)\,d\tau\,dt, \end{aligned} $$
where \(\alpha^{\pm}=\frac{1}{2} ( \alpha\pm\frac{1}{\alpha} ) \). By virtue of the above equations, we have the following asymptotic relations for sufficiently large \(\vert \lambda \vert \): for \(x<\frac{\pi}{2}\),
$$ \begin{aligned}[b] \varphi(x,\lambda) ={}&\cos\sqrt{\lambda}x+\frac{\sin\sqrt{\lambda }x}{2\sqrt{\lambda}} \biggl( 2h+ \int_{0}^{x}q(t)\,dt+ \int_{0}^{x}M(t,t)\, dt \biggr) \\ &+o \biggl( \frac{1}{\sqrt{\lambda}}\exp \vert \tau \vert x \biggr) ;\end{aligned} $$
for \(x>\frac{\pi}{2}\),
$$ \begin{aligned}[b] \varphi(x,\lambda) ={}&\alpha^{+}\cos\sqrt{\lambda}x+ \alpha^{-}\cos \sqrt{\lambda}(\pi-x) \\ &+\alpha^{+}\frac{\sin\sqrt{\lambda}x}{2\sqrt{\lambda }}I_{1}(x)+\alpha ^{-}I_{2}(x)+o \biggl( \frac{1}{\sqrt{\lambda}}\exp \vert \tau \vert x \biggr),\end{aligned} $$
where \(I_{1}(x)=2h+\int_{0}^{x}q(t)\,dt+\int_{0}^{x}M(t,t)\,dt\), \(I_{2}(x)=\int_{0}^{\pi/2} ( q(t)+M(t,t) ) \,dt-\int_{\pi /2}^{x} ( q(t)+M(t,t) ) \,dt\), and \(\tau= \vert \operatorname{Im}\sqrt {\lambda} \vert \).
Define a function \(\Delta(\lambda)\) as follows:
$$ \Delta(\lambda):=\varphi^{\prime}(\pi,\lambda)+H\varphi(\pi ,\lambda ). $$
This entire function is called a characteristic function of the problem L and the zeros of it are eigenvalues of the problem L. For sufficiently large \(\vert \lambda \vert \), by virtue of (8) and (9), we have the following asymptotic formula:
$$ \Delta(\lambda)=-\alpha^{+} \biggl\{ \sqrt{\lambda}\sin\sqrt{\lambda } \pi -\frac{\delta_{1}}{2}\cos\sqrt{\lambda}\pi+\frac{\delta _{2}}{2} \biggr\} +o \bigl( \exp \vert \tau \vert \pi \bigr), $$
$$\begin{gathered} \delta_{1} =2h+\alpha^{+}H+ \int_{0}^{\pi} \bigl( q(t)+M(t,t) \bigr) \,dt, \\ \delta_{2} =\frac{\alpha^{-}}{\alpha^{+}} \biggl[ -2H+ \int_{0}^{\pi } \bigl( q(t)+M(t,t) \bigr) \,dt-2 \int_{0}^{\pi/2} \bigl( q(t)+M(t,t) \bigr) \,dt \biggr] .\end{gathered} $$
It can be easily shown that the sequence \(\{ \lambda_{n} \} _{n\geq0}\) satisfies the following asymptotic relation for \(n\rightarrow \infty\):
$$ \sqrt{\lambda_{n}}=n+\frac{\mu_{n}}{2n\pi}+o \biggl(\frac{1}{n} \biggr) $$
$$\frac{1}{\sqrt{\lambda_{n}}}=\frac{1}{n}-\frac{\mu_{n}}{2n^{3}\pi}+o \biggl( \frac{1}{n^{3}} \biggr), $$
where \(\mu_{n}=\delta_{1}+(-1)^{n}\delta_{2}\).

Lemma 1

The eigenfunction\(\varphi(x,\lambda_{n})\)corresponding to the eigenvalue\(\lambda_{n}\)has exactlynzeros\(\{ x_{n}^{j}:\text{ }n\geq1, \text{ }j=\overline{0,n-1} \} \), namely nodal points, in\(( 0,\pi ) \), such that\(0< x_{n}^{0}< x_{n}^{1}<\cdots<x_{n}^{n-1}<\pi\)and the numbers\(\{ x_{n}^{j} \} \)have the following asymptotic formulae for sufficiently largen: for\(x_{n}^{j}\in(0,\frac{\pi}{2})\),
$$ x_{n}^{j}=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n}\frac{(\delta_{1}+\delta_{2})}{2n^{2}\pi} +\frac{I_{1}(x_{n}^{j})}{2n^{2}}+o(\frac{1}{n^{2}}),&n=2k,k\in \mathbb{Z}, \\ \frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n}\frac{(\delta_{1}-\delta_{2})}{2n^{2}\pi}+\frac {I_{1}(x_{n}^{j})}{2n^{2}} +o(\frac{1}{n^{2}}),&n=2k+1,k\in \mathbb{Z}; \end{array}\displaystyle \right . $$
and for\(x_{n}^{j}\in(\frac{\pi}{2},\pi)\),
$$ x_{n}^{j}=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n}\frac{(\delta_{1}+\delta_{2})}{2n^{2}\pi} +\frac{\alpha^{-}(\delta_{1}+\delta_{2})+\alpha ^{+}I_{1}(x_{n}^{j})-\alpha^{-}I_{2}(x_{n}^{j})}{2\rho_{n}n^{2}} +o(\frac{1}{n^{2}}),&n=2k,k\in \mathbb{Z} , \\ \frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n}\frac{(\delta_{1}-\delta_{2})}{2n^{2}\pi} +\frac{-\alpha^{-}(\delta_{1}-\delta_{2})+\alpha ^{+}I_{1}(x_{n}^{j})+\alpha^{-}I_{2}(x_{n}^{j})}{2\rho_{n}n^{2}} +o(\frac{1}{n^{2}}),&n=2k+1,k\in \mathbb{Z}, \end{array}\displaystyle \right . $$
where\(\rho_{n}=\alpha^{+}+ ( -1 ) ^{n}\alpha^{-}\).


By virtue of (8) and (9), we get the following asymptotic formula for eigenfunction \(\varphi(x,\lambda_{n})\):
$$\begin{gathered} \varphi(x,\lambda_{n})=\cos\sqrt{\lambda_{n}}x+ \frac{\sin\sqrt {\lambda _{n}}x}{\sqrt{\lambda_{n}}}I_{1}(x)+o \biggl( \frac{e^{ \vert \tau \vert x}}{\sqrt{\lambda_{n}}} \biggr)\quad \text{for }x< \frac{\pi}{2}, \\\begin{aligned}\varphi(x,\lambda_{n})={}&\alpha^{+}\cos\sqrt{ \lambda_{n}}x+\alpha^{-}\cos\sqrt{ \lambda_{n}} ( \pi-x ) +\frac{\alpha ^{+}\sin\sqrt{\lambda_{n}}x}{2\sqrt{\lambda_{n}}}I_{1}(x) \\ & +\frac{\alpha^{-}\sin\sqrt{\lambda_{n}} ( \pi-x ) }{2\sqrt{\lambda_{n}}}I_{2}(x)+o \biggl( \frac{e^{ \vert \tau \vert x}}{\sqrt{\lambda_{n}}} \biggr)\quad \text{for }x< \frac{\pi}{2}\end{aligned}\end{gathered} $$
for sufficiently large n, uniformly in x. Since the zeros of eigenfunctions are nodal points, from \(\varphi(x_{n}^{j},\lambda_{n})=0\), we get
$$\begin{gathered} \alpha^{+}\cos\sqrt{\lambda_{n}}x_{n}^{j}+ \alpha^{-}\cos\sqrt {\lambda _{n}} \bigl( \pi-x_{n}^{j} \bigr) +\frac{\alpha^{+}\sin\sqrt{\lambda _{n}}x_{n}^{j}}{\sqrt{\lambda_{n}}}I_{1} \bigl(x_{n}^{j} \bigr) \\ \quad{}+\frac{\alpha^{-}\sin \sqrt{\lambda_{n}}\pi\cos\sqrt{\lambda_{n}}x_{n}^{j}}{2\sqrt{\lambda _{n}}}I_{2} \bigl(x_{n}^{j} \bigr)-\frac{\alpha^{-}\sin\sqrt{\lambda_{n}}x_{n}^{j}\cos\sqrt{\lambda _{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2} \bigl(x_{n}^{j} \bigr)+o \biggl( \frac{e^{ \vert \tau \vert x_{n}^{j}}}{\sqrt{\lambda_{n}}} \biggr) =0, \end{gathered} $$
which implies that
$$\begin{gathered}\cot\sqrt{\lambda_{n}}x_{n}^{j} \biggl( \alpha ^{+}+\alpha ^{-}\cos\sqrt{ \lambda_{n}}\pi+\frac{\alpha^{-}\sin\sqrt{\lambda _{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2} \bigl(x_{n}^{j} \bigr) \biggr) \\ \quad=\alpha^{-}\sin\sqrt{\lambda_{n}}\pi-\frac{\alpha^{+}}{2\sqrt {\lambda _{n}}}I_{1} \bigl(x_{n}^{j} \bigr)+\frac{\alpha^{-}\cos\sqrt{\lambda_{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2} \bigl(x_{n}^{j} \bigr)+o \biggl( \frac{e^{ \vert \tau \vert x_{n}^{j}}}{\sqrt{\lambda_{n}}} \biggr) , \\ \cot\sqrt{\lambda_{n}}x_{n}^{j} = \frac{-\alpha^{-}\sin\sqrt{\lambda_{n}}\pi-\frac{\alpha^{+}}{2\sqrt{\lambda _{n}}}I_{1}(x_{n}^{j})+\frac{\alpha^{-}\cos\sqrt{\lambda_{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2}(x_{n}^{j})+o ( \frac{e^{ \vert \tau \vert x_{n}^{j}}}{\sqrt{\lambda_{n}}} ) }{\alpha^{+} ( 1+\frac{\alpha^{-}}{\alpha^{+}}\cos\sqrt{\lambda_{n}}\pi+\frac{\alpha^{-}\sin\sqrt{\lambda_{n}}\pi}{2\alpha^{+}\sqrt{\lambda _{n}}}I_{2}(x_{n}^{j}) ) } \\ \quad=\frac{-1}{\rho_{n}} \biggl( \alpha^{-}\sin\sqrt{\lambda_{n}} \pi +\frac{\alpha^{+}}{2\sqrt{\lambda_{n}}}I_{1} \bigl(x_{n}^{j} \bigr)- \frac{\alpha^{-}\cos \sqrt{\lambda_{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2} \bigl(x_{n}^{j} \bigr) \biggr) +o \biggl( \frac{e^{ \vert \tau \vert x_{n}^{j}}}{\sqrt{ \lambda_{n}}} \biggr) ,\end{gathered} $$
which is equivalent to
$$\begin{aligned} \tan \biggl( \frac{\pi}{2}-\sqrt{\lambda_{n}}x_{n}^{j} \biggr) ={}&\frac {-1}{\rho_{n}} \biggl( \alpha^{-}\sin\sqrt{ \lambda_{n}}\pi+\frac{\alpha ^{+}}{2\sqrt{\lambda_{n}}}I_{1} \bigl(x_{n}^{j} \bigr)-\frac{\alpha^{-}\cos\sqrt {\lambda _{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2} \bigl(x_{n}^{j} \bigr) \biggr) \\&+o \biggl( \frac{e^{ \vert \tau \vert x_{n}^{j}}}{\sqrt{\lambda _{n}}} \biggr)\end{aligned} $$
for \(x_{n}^{j}>\frac{\pi}{2}\). Taylor’s expansions formula for the arctangent yields
$$\begin{aligned} \sqrt{\lambda_{n}}x_{n}^{j} ={}& ( j+1/2 ) \pi \\ &+\frac{1}{\rho_{n}} \biggl( \alpha^{-}\sin\sqrt{ \lambda_{n}}\pi +\frac{\alpha^{+}}{2\sqrt{\lambda_{n}}}I_{1} \bigl(x_{n}^{j} \bigr)-\frac{\alpha^{-}\cos \sqrt{\lambda_{n}}\pi}{2\sqrt{\lambda_{n}}}I_{2} \bigl(x_{n}^{j} \bigr) \biggr) \\ &+o \biggl( \frac{e^{ \vert \tau \vert x_{n}^{j}}}{\sqrt {\lambda _{n}}} \biggr).\end{aligned} $$
If we divide both sides of this equality by \(\sqrt{\lambda_{n}}\) and take account of the asymptotic formula of \(\sqrt{\lambda_{n}}\), we get
$$\begin{aligned} x_{n}^{j} =&\frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n} \frac{\mu_{n}}{2n^{2}\pi} \\ &+\frac{(-1)^{n}\alpha^{-}\mu_{n}+\alpha ^{+}I_{1}(x_{n}^{j})-(-1)^{n}\alpha^{-}I_{2}(x_{n}^{j})}{2\rho _{n}n^{2}}+o \biggl(\frac{1}{n^{2}} \biggr). \end{aligned}$$

The proof of (14) is completed. Equation (13) can be proved similarly. □

Let \(\Omega=\Omega_{0}\cup\Omega_{1}\) be the set of zeros of eigenfunction, i.e., \(\Omega_{0}= \{ x_{n}^{j}:n=2k,\text{ }k\in \mathbb{Z} \} \), \(\Omega_{1}= \{ x_{n}^{j}:n=2k+1,\text{ }k\in \mathbb{Z} \} \). For each fixed \(x\in ( 0,\pi ) \), there exists a sequence \(( x_{n}^{j(n)} ) \subset\Omega_{m}\) (\(m=0,1\)), which converges to x. Therefore, from Lemma 1, we can show that the following finite limits exist:
$$\begin{aligned}& \lim_{n\rightarrow\infty}2n^{2} \biggl( x_{n}^{j(n)}-\frac { ( j(n)+\frac{1}{2} ) \pi}{n} \biggr) =f_{m}(x) \quad\text{for }x< \frac{\pi}{2}, \end{aligned}$$
$$\begin{aligned}& \lim_{n\rightarrow\infty}2n^{2} \biggl( x_{n}^{j(n)}-\frac { ( j(n)+\frac{1}{2} ) \pi}{n} \biggr) =g_{m}(x)\quad \text{for }x>\frac{\pi}{2}, \end{aligned}$$
$$\begin{aligned}& f_{m}(x) =-\frac{\mu_{m}x}{\pi}+I_{1}(x)\quad\text{for }x< \frac{\pi}{2}, \end{aligned}$$
$$\begin{aligned}& g_{m}(x)=-\frac{\mu_{m}x}{\pi}+I_{1}(x)+\sigma_{m} \quad\text{for }x>\frac {\pi}{2}, \end{aligned}$$
where \(\sigma_{m}=\frac{(-1)^{m}\alpha^{-} ( \mu_{m}-2I_{1}(\frac {\pi}{2})+2h ) }{\rho_{m}}\). Put
$$ F_{m}(x)=\left \{ \textstyle\begin{array}{l@{\quad}l} f_{m}(x)&\text{for }x< \frac{\pi}{2} , \\ g_{m}(x)& \text{for }x>\frac{\pi}{2}.\end{array}\displaystyle \right . $$
The following theorem shows that if one of \(q(x)\) or \(M(x,x)\) is given, then the other one can be determined uniquely by using a dense subset of the given nodal set.

Theorem 1

The given dense subset of the nodal set\(\Omega_{0}\) (or\(\Omega_{1} \)) uniquely determines\(q(x)+M(x,x)\), a.e. on\(( 0,\pi ) \)and the coefficientsh, H, andαof the boundary and discontinuity conditions. \(q(x)+M(x,x)\)and the constantsh, H, andαcan be constructed by the following formulae:
  1. 1.

    For each fixed\(x\in(0,\pi)\), choose a sequence\(( x_{n}^{j(n)} ) \subset\Omega_{0}\), i.e., \(\lim_{n\rightarrow \infty}x_{n}^{j(n)}=x\);

  2. 2.
    Find\(F_{m}(x)\)from equation (19) and calculate
    $$\begin{gathered} h=\frac{F_{0}(0)}{2}, \\ \mu_{0}=-F_{0}(\pi)+F_{0}(0)-F_{0} \biggl(\frac{\pi }{2}-0 \biggr)+F_{0} \biggl(\frac{\pi}{2}+0 \biggr), \\ q(x)+M(x,x) =F_{0}^{\prime}(x)+\frac{\mu_{0}}{\pi}, \\ \alpha=\sqrt{\frac{F_{0}(0)-2F_{0}(\frac{\pi}{2}-0)}{F_{0}(0)-2F_{0}(\frac{\pi}{2}+0)}}, \\ 2I_{1} \biggl( \frac{\pi}{2} \biggr) =-F_{0}( \pi )+F_{0}(0)+F_{0} \biggl(\frac{\pi}{2}-0 \biggr)+F_{0} \biggl(\frac{\pi}{2}+0 \biggr), \\ H=\frac{\alpha^{+} ( \mu_{0}-2h ) +2\alpha^{-} ( I_{1} ( \pi/2 ) -F_{0}(0) ) }{ ( \alpha^{+} ) ^{2}-2\alpha^{-}}.\end{gathered} $$

Example 1

Consider the following BVP:
$$ L:\left \{ \textstyle\begin{array}{l} -y^{\prime\prime}+q(x)y+\int_{0}^{x}M(x,t)y^{\prime}(t)\,dt=\lambda y,\quad x\in(0,\pi),\\ y^{\prime}(0)-hy(0)=0,\\ y^{\prime}(\pi)+Hy(\pi)=0,\\ y(\frac{\pi}{2}+0)=\alpha y(\frac{\pi}{2}-0),\\ y^{\prime}(\frac{\pi}{2}+0)=\alpha^{-1}y^{\prime}(\frac{\pi}{2}-0),\end{array}\displaystyle \right . $$
where \(q(x)\) and \(M(x,t)\) are real-valued functions from the class \(L_{2}(0,\pi)\) and \(W_{2}^{1}(0,\pi)\), respectively, and h, H, α are unknown coefficients we confirmed on the assumptions of the problem L. Let \(\{ x_{n}^{j} \} \) be the zeros of the eigenfunction of the considered problem in \((0,\pi)\) with the following asymptotics: If \(x_{n}^{j}\in ( 0,\frac{\pi}{2} ) \),
$$x_{n}^{j}=\frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n} \frac{2}{5n^{2}\pi}+\frac{2+\sin(\frac{j+1/2}{n})\pi}{2n^{2}} +o \biggl( \frac{1}{n^{2}} \biggr) . $$
If \(x_{n}^{j}\in ( \frac{\pi}{2},\pi ) \),
$$x_{n}^{j}=\frac{ ( j+1/2 ) \pi}{n}-\frac{ ( j+1/2 ) \pi}{n} \frac{2}{5n^{2}\pi}+\frac{2+\sin(\frac{j+1/2}{n})\pi }{2n^{2}}-\frac{6/5}{2n^{2}}+o \biggl( \frac{1}{n^{2}} \biggr), $$
then we can calculate that
$$ F_{0}(x)=\left \{ \textstyle\begin{array}{l@{\quad}l} -\frac{4x}{5\pi}+\sin x+2&\textit{for }x< \frac{\pi}{2}, \\ -\frac{4x}{5\pi}+\sin x+\frac{4}{5}&\textit{for }x>\frac{\pi}{2}.\end{array}\displaystyle \right . $$
According to Theorem 1,
$$\begin{gathered} h=\frac{F_{0}(0)}{2}=1, \\ \mu_{0}=-F_{0}(\pi)+F_{0}(0)-F_{0} \biggl(\frac{\pi }{2}-0 \biggr)+F_{0} \biggl(\frac{\pi}{2}+0 \biggr)=\frac{4}{5}, \\ q(x)+M(x,x) =F_{0}^{\prime}(x)+\frac{\mu_{0}}{\pi}=\cos x, \\ \alpha=\sqrt{\frac{F_{0}(0)-2F_{0}(\frac{\pi}{2}-0)}{F_{0}(0)-2F_{0}(\frac{\pi}{2}+0)}}=2, \\ H=\frac{\alpha^{+} ( \mu_{0}-2h ) +2\alpha^{-} ( I_{1} ( \pi/2 ) -F_{0}(0) ) }{ ( \alpha^{+} ) ^{2}-2\alpha^{-}}=0.\end{gathered} $$

3 Conclusion

In this paper we have investigated the discontinuous inverse nodal problem for Volterra type integro-differential operator. We showed that if one of \(q(x)\) or \(M(x,x)\) is given, then the other one can be determined uniquely by using only the given nodal points.


Availability of data and materials

Not applicable.

Authors’ contributions

The author read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Competing interests

The author declares that he has no competing interests.


  1. 1.
    McLaughlin, J.R.: Inverse spectral theory using nodal points as data—a uniqueness result. J. Differ. Equ. 73, 354–362 (1988) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hald, O.H., McLaughlin, J.R.: Solutions of inverse nodal problems. Inverse Probl. 5, 307–347 (1989) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Yang, X.-F.: A solution of the nodal problem. Inverse Probl. 13, 203–213 (1997) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Browne, P.J., Sleeman, B.D.: Inverse nodal problem for Sturm–Liouville equation with eigenparameter depend boundary conditions. Inverse Probl. 12, 377–381 (1996) CrossRefMATHGoogle Scholar
  5. 5.
    Buterin, S.A., Shieh, C.T.: Inverse nodal problem for differential pencils. Appl. Math. Lett. 22, 1240–1247 (2009) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buterin, S.A., Shieh, C.T.: Incomplete inverse spectral and nodal problems for differential pencil. Results Math. 62, 167–179 (2012) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cheng, Y.H., Law, C.-K., Tsay, J.: Remarks on a new inverse nodal problem. J. Math. Anal. Appl. 248, 145–155 (2000) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Guo, Y., Wei, G.: Inverse problems: dense nodal subset on an interior subinterval. J. Differ. Equ. 255, 2002–2017 (2013) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Law, C.K., Shen, C.L., Yang, C.F.: The inverse nodal problem on the smoothness of the potential function. Inverse Probl. 15(1), 253–263 (1999). Erratum: Inverse Probl. 17, 361–363 (2001) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ozkan, A.S., Keskin, B.: Inverse nodal problems for Sturm–Liouville equation with eigenparameter dependent boundary and jump conditions. Inverse Probl. Sci. Eng. 23(8), 1306–1312 (2015) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Shieh, C.-T., Yurko, V.A.: Inverse nodal and inverse spectral problems for discontinuous boundary value problems. J. Math. Anal. Appl. 347, 266–272 (2008) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yang, X.-F.: A new inverse nodal problem. J. Differ. Equ. 169, 633–653 (2001) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yang, C.-F., Yang, X.-P.: Inverse nodal problems for the Sturm–Liouville equation with polynomially dependent on the eigenparameter. Inverse Probl. Sci. Eng. 19(7), 951–961 (2011) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yang, C.-F.: Inverse nodal problems of discontinuous Sturm–Liouville operator. J. Differ. Equ. 254, 1992–2014 (2013) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Yang, C.-F., Pivovarchik, V.N.: Inverse nodal problem for Dirac system with spectral parameter in boundary conditions. Complex Anal. Oper. Theory 7, 1211–1230 (2013) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Buterin, S.A.: On the reconstruction of a convolution perturbation of the Sturm–Liouville operator from the spectrum. Differ. Equ. 46, 150–154 (2010) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Buterin, S.A.: On an inverse spectral problem for first-order integro-differential operators with discontinuities. Appl. Math. Lett. 78, 65–71 (2018) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and Their Applications. Nova Science, New York (2001) MATHGoogle Scholar
  19. 19.
    Kuryshova, Y.V.: Inverse spectral problem for integro-differential operators. Math. Notes 81(6), 767–777 (2007) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wu, B., Yu, J.: Uniqueness of an inverse problem for an integro-differential equation related to the Basset problem. Bound. Value Probl. 2014, Article ID 229 (2014) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yurko, V.A.: An inverse problem for integro-differential operators. Math. Notes 50(5–6), 1188–1197 (1991) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yurko, V.A.: Inverse problems for second order integro-differential operators with discontinuities. Appl. Math. Lett. 74, 1–6 (2017) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kuryshova, Y.V., Shieh, C.T.: An inverse nodal problem for integro-differential operators. J. Inverse Ill-Posed Probl. 18, 357–369 (2010) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Keskin, B., Ozkan, A.S.: Inverse nodal problems for Dirac-type integro-differential operators. J. Differ. Equ. 263, 8838–8847 (2017) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Buterin, S.A.: The inverse problem of recovering the Volterra convolution operator from the incomplete spectrum of its rank-one perturbation. Inverse Probl. 22, 2223–2236 (2006) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Buterin, S.A.: On an inverse spectral problem for a convolution integro-differential operator. Results Math. 50, 173–181 (2007) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceCumhuriyet UniversitySivasTurkey

Personalised recommendations