# On generalized strongly modified h-convex functions

• Taiyin Zhao
• Waqas Nazeer
• Imran Bashir
• Ijaz Hussain
Open Access
Research

## Abstract

We derive some properties and results for a new extended class of convex functions, generalized strongly modified h-convex functions. Moreover, we discuss Schur-type, Hermite–Hadamard-type, and Fejér-type inequalities for this class. The crucial fact is that this extended class has awesome properties similar to those of convex functions.

## Keywords

h-convex function Modified h-convex function Schur-type inequality Hermite–Hadamard inequality Fejér-type inequality

## 1 Introduction

Nowadays, in science and modern analysis the convexity plays an important role in economics, statistics, management science, engineering, and optimization theory. For instance, Barani et al. [1] presented the Hermite–Hadamard inequality for functions with preinvex absolute values of derivatives. Characterizations of convexity via Hadamard’s inequality has been studied in [2]. In 2003, Dragomir and Pearce [3] proposed some applications of Hermite–Hadamard inequalities. In 2015, Dragomir [4] presented inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Some other interesting results can be found in books [5, 6] and research papers [7, 8]. In the recent years, generalizations and extensions were made rapidly for convex functions; for a recent generalization, see [9, 10, 11].

Convexity in the classical sense for a function $$g:L=[a_{1},a_{2}] \subset \mathbb{R} \rightarrow \mathbb{R}$$ is defined as
\begin{aligned} g\bigl(ta_{1}+(1-t)a_{2}\bigr) \leq t g(a_{1})+(1-t)g(a_{2}), \end{aligned}
where $$a_{1},a_{2} \in L$$ and $$t \in [0,1]$$.

The work on the convexity is extended day by day by using some techniques; see [12, 13, 14]. The strongly extended convexity is widely used in optimization, economics, and nonlinear programming.

Convex functiosn satisfy several inequalities in which famous inequalities are of Schur type, Hermite–Hadamard-type, and Fejér-type inequalities. The Hermite–Hadamard-type inequality introduced by Jaques Hadamard for classical convex functions $$g:L=[a_{1},a_{2}]\subset \mathbb{R} \rightarrow \mathbb{R}$$ as
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr)\leq \frac{1}{a_{2}-a_{1}} \int _{a_{1}}^{a_{2}}g(x)\,dx \leq \frac{g(a_{1})+g(a_{2})}{2}. \end{aligned}
For extended versions of this inequality, see [12] and [13]. For further reading, see [15, 16, 17, 18, 19].
Lipot Fejér presented an extended version of the Hermite–Hadamard inequality, known as the Fejér inequality or a weighted version of the Hermite–Hadamard inequality. If $$f:I\rightarrow \mathbb{R}$$ is a convex function, then
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \int _{a_{1}}^{a_{2}}w(x)\,dx \leq \frac{1}{a_{2}-a_{1}} \int _{a_{1}}^{a_{2}}w(x)g(x)\,dx \leq \frac{g(a_{1})+g(a_{2})}{2} \int _{a_{1}}^{a_{2}}w(x)\,dx, \end{aligned}
where $$a_{1}\leq a_{2}$$, and $$w:I\rightarrow \mathbb{R}$$ is nonnegative, integrable, and symmetric about $$\frac{a+b}{2}$$. For further extended versions and development, see [20] and [8].

In this paper, we first present some preliminaries and basic results. In the next section, we investigate Schur-type, Hermite–Hadamard-type, and Fejér-type inequalities for the newly introduced class of functions.

## 2 Preliminaries

In this section, we investigate a new class of convexity by using a basic result. There is no loss of generality in the extended version of convexity. To get asymptotic results, it is necessary to put some restrictions: L is an interval in $$\mathbb{R}$$, and $$\eta : A \times A \rightarrow B \subseteq \mathbb{R}$$ is a bifunction.

### Definition 1

(h-convex function [21])

Let $$g,h:L\subset \mathbb{R}\rightarrow \mathbb{R}$$ be nonnegative functions. Then g is called an h-convex function if
\begin{aligned} g \bigl(ta_{1}+(1-t)a_{2} \bigr)\leq h(t)g(a_{1})+h(1-t)g(a_{2}) \end{aligned}
for all $$a_{1},a_{2}\in L$$ and $$t\in [0,1]$$.

### Definition 2

(Modified h-convex function [13])

Let $$g,h:L\subset \mathbb{R} \rightarrow \mathbb{R}$$ be nonnegative functions. Then g is called a modified h-convex function if
\begin{aligned} g \bigl(t a_{1}+(1-t)a_{2} \bigr)\leq h(t)g(a_{1})+\bigl(1-h(t)\bigr)g(a_{2}) \end{aligned}
(1)
for all $$a_{1},a_{2}\in L$$ and $$t\in [0,1]$$.

### Definition 3

(Generalized modified h-convex function)

Let functions g, h: $$J\subset \mathbb{R}\rightarrow \mathbb{R}$$ be nonnegative functions. Then $$g:I\subset \mathbb{R}\rightarrow \mathbb{R}$$ is called a generalized modified h-convex function if
\begin{aligned} g \bigl(t a_{1}+(1-t)a_{2} \bigr)\leq g(a_{2})+h(t) \eta \bigl(g(a_{1}),g(a _{2}) \bigr) \end{aligned}
(2)
for all $$a_{1},a_{2}\in I$$ and $$t\in [0,1]$$.

### Definition 4

(Wright-convex function [20])

A function $$g:L\subset \mathbb{R}\rightarrow \mathbb{R}$$ is said to be Wright-convex if
\begin{aligned} g \bigl((1-t)a_{1} +t a_{2} \bigr)+g \bigl(t a_{1}+(1-t)a_{2} \bigr) \leq g(a_{1})+g(a_{2}) \end{aligned}
for all $$a_{1},a_{2}\in L$$ and $$t\in [0,1]$$.

### Definition 5

A function η is said to be additive if $$\eta (x_{1},y_{1})+\eta (x_{2},y_{2}) =\eta (x_{1}+x_{2},y_{1}+y _{2})$$ for all $$x_{1},x_{2},y_{1},y_{2} \in \mathbb{R}$$; see [22] for more detail.

### Definition 6

(Nonnegative homogeneity)

A function η is said to be nonnegatively homogeneous if $$\eta ( \lambda a_{1},\lambda a_{2} )= \lambda \eta (a_{1},a_{2})$$ for all $$a_{1},a_{2} \in \mathbb{R}$$ and $$\lambda \geq 0$$.

### Definition 7

(Supermultiplicativity [23])

A function $$g:L\subset \mathbb{R}\rightarrow \mathbb{R_{+}}$$ is said to be a supermultiplicative function if $$g(a_{1}a_{2})\geq g(a_{1}) g(a_{2})$$ for all $$a_{1},a_{2} \in L$$, $$t \in [0,1]$$.

### Definition 8

(Similar-order functions [24])

Functions f and g are said to be of similar order on $$L\subseteq \mathbb{R}$$ if $$\langle f(x)-f(y),g(x)-g(y)\rangle \geqslant 0$$ for all $$x,y \in L$$.

Now we are going to introduce a new extended definition of convexity.

### Definition 9

(Generalized strongly modified h-convex function)

Let $$g,h:L\subset \mathbb{R}\rightarrow \mathbb{R}$$ be nonnegative functions. Then g is called a generalized strongly modified h-convex function if
\begin{aligned} g \bigl(t a_{1}+(1-t)a_{2} \bigr)\leq g(a_{2})+h(t) \eta \bigl(g(a_{1}),g(a _{2}) \bigr)-\mu t(1-t) (a_{1}-a_{2})^{2} \end{aligned}
(3)
for all $$a_{1},a_{2}\in L$$ and $$t\in [0,1]$$.

### Remark 1

1. 1.

Inequality (3) reduces to inequality (1) if $$\mu =0$$ and $$\eta (x,y)=x-y$$.

2. 2.

Definition (9) becomes the definition of a classical convex function when $$\mu =0$$, $$\eta (x,y)=x-y$$, and $$h(t)=t$$.

3. 3.

Inequality(3) reduces to inequality (2) when $$\mu =0$$.

4. 4.

If $$h(t)=t$$, then definition (9) reduces to the definition of a strongly generalized convex function [12].

### Example 1

A function $$g:L=[a_{1},a_{2}] \subset \mathbb{R}\rightarrow \mathbb{R}$$ is defined by $$g(x)=x^{2}$$, $$\eta (a_{1},a_{2})=2a_{1}+a _{2}$$, and $$h(t)\geq t$$, then g is a generalized strongly modified h-convex function.

## 3 Main results

This section contains some basic and straightforward results. The following proposition shows the linearity of the class of generalized strongly modified h-convex functions.

### Proposition 1

Letfandgbe generalized strongly modifiedh-convex functions whereηis additive and nonnegatively homogeneous. Then for all$$a,b \in \mathbb{R}$$, $$af+bg$$is also a generalized strongly modifiedh-convex function.

### Proposition 2

Let$$h_{1}$$, $$h_{2}$$be nonnegative functions onLsuch that$$h_{2}(t)\leqslant h_{1}(t)$$. Ifgis a generalized strongly modified$$h_{2}$$-convex function, thengis also a generalized strongly modified$$h_{1}$$-convex function.

### Proof

As g is generalized strongly modified h-convex function, for all $$a_{1} ,a_{2} \in L$$ and $$t \in [0,1]$$, we have
\begin{aligned} g \bigl(t a_{1}+(1-t)a_{2} \bigr) \leq& g(a_{2})+h_{2}(t) \eta \bigl(g(a _{1}),g(a_{2}) \bigr)-\mu t(1-t) (a_{1}-a_{2})^{2} \\ \leq& g(a_{2})+h_{1}(t) \eta \bigl(g(a_{1}),g(a_{2}) \bigr)-\mu t(1-t) (a_{1}-a _{2})^{2}. \end{aligned}
This completes the proof. □

### Remark 2

If g is a generalized strongly modified $$h_{1}$$-convex and $$h_{1} (t)\leqslant h_{2}(t)$$, then g is a generalized strongly modified $$h_{2}$$-convex function.

### Proposition 3

Letfbe a linear function such that$$f(x)-f(y)=x-y$$, and letgbe a generalized strongly modifiedh-convex function. Then$$g\circ f$$is also a generalized strongly modifiedh-convex function.

### Proof

As f is a linear function such that $$f(x)-f(y)=x-y$$ and g is a generalized strongly modified h-convex function, for all $$a_{1} ,a_{2} \in L$$ and $$t \in [0,1]$$, we get
\begin{aligned} (g\circ f) \bigl(t a_{1}+(1-t)a_{2}\bigr) =&g(t f(a_{1})+(1-t)f(a_{2}) \\ \leq &(g\circ f) (a_{2})+h(t)\eta \bigl((g\circ f) (a_{1}),(g \circ f) (a _{2})\bigr) \\ &{}-\mu t(1-t) \bigl(f(a_{1})-f(a_{2}) \bigr)^{2} \\ =&(g\circ f) (a_{2})+h(t)\eta \bigl((g\circ f) (a_{1}),(g \circ f) (a_{2})\bigr) \\ &{}-\mu t(1-t) (a_{1}-a_{2})^{2} . \end{aligned}
This shows that $$g\circ f$$ is a generalized strongly modified h-convex function. □

### Proposition 4

Let functions$$g_{j} :L\subset \mathbb{R}\rightarrow \mathbb{R}$$be generalized strongly modifiedh-convex functions, $$\sum_{j=1}^{m} \lambda _{j} =1$$, and letηbe additive non-negatively homogeneous function. Then their linear combination$$f:\mathbb{R}\rightarrow \mathbb{R}$$is also a generalized strongly modifiedh-convex function.

### Proof

As $$g_{j}:L \subset \mathbb{R}\rightarrow \mathbb{R}$$ be generalized strongly modified h-convex functions, for $$a_{1},a_{2} \in L$$ and $$t\in [0,1]$$, let
\begin{aligned} f(x)= \sum_{j=1}^{m}\lambda _{j}g_{j}(x). \end{aligned}
Set $$x=(t a_{1}+(1-t)a_{2})$$. Then
\begin{aligned} f \bigl(t a_{1}+(1-t)a_{2} \bigr) =& \sum _{j=1}^{m}\lambda _{j}g_{j} \bigl(t a_{1}+(1-t)a_{2} \bigr) \\ \leq & \sum_{j=1}^{m} \lambda _{j}g_{j}(a_{2})+h(t) \sum _{j=1}^{m} \lambda _{j} \eta \bigl(g_{i}(a_{1}),g_{i}(a_{2}) \bigr) \\ &{}-\mu t(1-t) (a_{1}-a_{2})^{2} \sum _{j=1}^{m} \lambda _{j} \\ = &f(a_{2})+h(t) \eta \Biggl( \sum_{j=1}^{m} \lambda _{j}g_{i}(a_{1}), \sum _{j=1}^{m} \lambda _{j}g_{i}(a_{2}) \Biggr) \\ &{}-\mu t(1-t) (a_{1}-a_{2})^{2} \\ = &f(a_{2})+h(t) \eta \bigl( f(a_{1}),f(a_{2}) \bigr)-\mu t(1-t) (a _{1}-a_{2})^{2}. \end{aligned}
This completes the proof. □

### Corollary 1

Every generalized strongly modifiedh-convex function is a generalized modified convex function.

### Proof

Let g be a generalized modified h-convex function. Then
\begin{aligned} g \bigl(t a_{1}+(1-t)a_{2} \bigr) \leq & g(a_{2})+h(t) \eta \bigl(g(a_{1}),g(a_{2}) \bigr)-\mu t(1-t) (a_{1}-a_{2})^{2} \\ \leq & g(a_{2})+h(t) \eta \bigl(g(a_{1}),g(a_{2}) \bigr) \end{aligned}
for all $$a_{1} ,a_{2} \in L\subset \mathbb{R}$$. □

### Corollary 2

Ifgis generalized strongly convex function and$$t\leq h(t)$$, thengis a generalized strongly modifiedh-convex function.

### Theorem 1

(Schur-type inequality)

Let$$g :L\rightarrow \mathbb{R}$$be a generalized strongly modifiedh-convex function, lethbe a supermultiplicative function, and let$$\eta : N\times N\rightarrow M$$be a bifunction for appropriate$$A,B\subseteq \mathbb{R}$$. Then for$$a_{1},a_{2},a_{3} \in L$$such that$$a_{1}< a_{2}< a_{3}$$and$$a_{3}-a_{1},a_{3} -a_{2},a_{2}-a_{1} \in L$$, we have the inequality
\begin{aligned} h(a_{3}-a_{1})g(a_{2}) \leq & h(a_{3}-a_{1})g(a_{3})+h(a_{3}-a_{2}) \eta \bigl(g(a_{1}),g(a_{2})\bigr) \\ &{}-\mu (a_{3}-a_{2}) (a_{2}-a_{1})h(a_{3}-a_{1}) \end{aligned}
(4)
if and only ifgis a generalized strongly modifiedh-convex function.

### Proof

Let $$a_{1},a_{2},a_{3} \in L\subset \mathbb{R}$$ be such that $$\frac{(a_{3}-a_{2})}{(a_{3}-a_{1})} \in (0,1)\subseteq L$$, $$\frac{(a _{2}-a_{1})}{(a_{3}-a_{1})} \in (0,1)\subseteq L$$, and $$\frac{(a_{3}-a _{2})}{(a_{3}-a_{1})}+\frac{(a_{2}-a_{1})}{(a_{3}-a_{1})}=1$$. Then
\begin{aligned} h(a_{3}-a_{1})=h \biggl(\frac{a_{3}-a_{1}}{a_{3}-a_{2}}({a_{3}-a_{2}}) \biggr) \geq h \biggl(\frac{a_{3}-a_{1}}{a_{3}-a_{2}} \biggr)h({a_{3}-a_{2}}) \end{aligned}
as h is supermultiplicative.
Suppose $$h({a_{3}-a_{2}})\geq 0$$. Then by the definition of g we have
\begin{aligned} g \bigl(t x+(1-t)y \bigr)\leq g(y)+h(t) \eta \bigl(g(x),g(y)\bigr)-\mu t(1-t) (x-y)^{2}. \end{aligned}
(5)
Inserting $$\frac{(a_{3}-a_{2})}{(a_{3}-a_{1})}=t$$, $$x=a_{1}$$, and $$y= a_{3}$$ into inequality (5), we obtain
\begin{aligned} \begin{aligned}&\begin{aligned} g \biggl(\frac{(a_{3}-a_{2})}{(a_{3}-a_{1})} a_{1}+ \biggl(1-\frac{(a_{3}-a _{2})}{(a_{3}-a_{1})}\biggr)a_{3} \biggr) \leq {}& g(a_{3})+h \biggl(\frac{(a _{3}-a_{2})}{(a_{3}-a_{1})} \biggr) \eta \bigl(g(a_{1}),g(a_{3})\bigr) \\ &{}- \mu (a_{3}-a_{2}) (a_{2}-a_{1}) \\ \leq{} & g(a_{3})+\frac{h(a_{3}-a_{2})}{h(a_{3}-a_{1})} \eta \bigl(g(a_{1}),g(a _{3})\bigr) \\ &{}-\mu (a_{3}-a_{2}) (a_{2}-a_{1}), \end{aligned} \\ &\begin{aligned} g(a_{2}) h(a_{3}-a_{1}) \leq {}&h(a_{3}-a_{1})g(a_{3}) \\ &{}+h(a_{3}-a_{2}) \eta \bigl(g(a_{1}),g(a_{3}) \bigr) \\ &{}- \mu (a_{3}-a_{2}) (a_{2}-a_{1})h(a_{3}-a_{1}). \end{aligned} \end{aligned} \end{aligned}
(6)
Conversely, suppose inequality (4) holds and insert $$a_{1}=x$$, $$a_{2}=tx+(1-t)y$$, and $$a_{3}=y$$ into inequality (4). Then we get
\begin{aligned} &\begin{aligned} h(y-x)g \bigl(t x+(1-t)y \bigr) \leq {}& h(y-x)g(y)+h(y-x)h(t) \eta \bigl(g(x),g(y)\bigr) \\ &{}-\mu h(y-x)t(y-x) (1-t) (y-x), \end{aligned} \\ &g \bigl(t x+(1-t)y \bigr) \leq g(y)+h(t) \eta \bigl(g(x),g(y)\bigr)-\mu t(1-t) (x-y)^{2}. \end{aligned}
This completes the proof. □

### Remark 3

1. 1.

By taking $$h(t)=t$$ in (4) it is reduced to aSchur-type inequality for generalized strongly convex functions.

2. 2.

If $$\mu =0$$ and $$\eta (x,y)=x-y$$, then (4) is reduced to a Schur-type inequality for modified h-convex functions; see [13].

Further, we will discuss the Hermite–Hadamard-type inequality for generalized strongly modified h-convex functions.

### Theorem 2

Let function$$g:L\rightarrow \mathbb{R}$$be a generalized strongly modifiedh-convex function on$$[a_{1},a_{2}]$$with$$a_{1}< a_{2}$$. Then
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-h\biggl(\frac{1}{2}\biggr) M_{\eta }+ \frac{ \mu }{12}(a_{2}-a_{1})^{2} \leq & \frac{1}{a_{2}-a_{1}} \int _{a_{1}} ^{a_{2}}g((x)\,dx \\ \leq& g(a_{2})+N_{\eta } -\frac{\mu }{6}(a_{2}-a_{1})^{2}. \end{aligned}
(7)

### Proof

Choosing $$w=ta_{1} +(1-t)a_{2}$$ and $$z=(1-t)a_{1} +ta_{2}$$, we have
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) =&g \biggl(\frac{w+z}{2} \biggr) \\ =& g \biggl(\frac{ta_{1} +(1-t)a_{2}+(1-t)a_{1} +ta_{2}}{2} \biggr). \end{aligned}
Now by the definition of g we have
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \leq & g\bigl((1-t)a_{1} +ta_{2}\bigr)+h\biggl( \frac{1}{2}\biggr) \eta \bigl(g \bigl(ta_{1} +(1-t)a_{2}\bigr),g\bigl((1-t)a_{1} +ta_{2}\bigr)\bigr) \\ &{}-\mu \frac{1}{2}\biggl(1-\frac{1}{2}\biggr) (a_{2}-a_{1})^{2}(2t-1)^{2}. \end{aligned}
Integrating with respect to t on [0,1], we get
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \leq & \int _{0}^{1}g\bigl((1-t)a _{1} +ta_{2}\bigr)\,dt \\ &{}+h\biggl(\frac{1}{2}\biggr) \int _{0}^{1}\eta \bigl(g\bigl(ta_{1} +(1-t)a_{2}\bigr),g\bigl((1-t)a _{1} +ta_{2} \bigr)\bigr)\,dt \\ &{}- \frac{\mu }{4}(a_{2}-a_{1})^{2} \int _{0}^{1}(2t-1)^{2}\,dt. \end{aligned}
Putting $$x=(1-t)a_{1} +ta_{2}$$, we get
\begin{aligned}&g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \leq \frac{1}{a_{2}-a_{1}} \int _{a_{1}}^{a_{2}}g(x)\,dx+h\biggl( \frac{1}{2}\biggr) M_{\eta } -\frac{\mu }{12}(a_{2}-a_{1})^{2}, \\ &g \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-h\biggl(\frac{1}{2}\biggr) M_{\eta }+ \frac{ \mu }{12}(a_{2}-a_{1})^{2} \leq \frac{1}{a_{2}-a_{1}} \int _{a_{1}} ^{a_{2}}g((x)\,dx. \end{aligned}
(8)
In the right-hand side of inequality (8), we set $$x=ta_{1} +(1-t)a_{2}$$, and using the definition of g, we get
\begin{aligned}& \int _{a_{1}}^{a_{2}}g(x)\,dx \leq (a_{2}-a_{1})g(a_{2})+(a_{2}-a_{1}) \int _{0}^{1}h(t) \eta (g\bigl(a_{1},g(a_{2}) \bigr)\,dt -\frac{\mu }{6}(a_{2}-a_{1})^{2}, \\ &\frac{1}{(a_{2}-a_{1})} \int _{a_{1}}^{a_{2}}g(x)\,dx \leq g(a_{2})+N _{\eta } -\frac{\mu }{6}(a_{2}-a_{1})^{2}. \end{aligned}
(9)
Now from inequalities (8) and (9) we get
\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-h\biggl( \frac{1}{2}\biggr) M_{\eta }+ \frac{ \mu }{12}(a_{2}-a_{1})^{2} \leq &\frac{1}{a_{2}-a_{1}} \int _{a_{1}} ^{a_{2}}g((x)\,dx \\ \leq& g(a_{2})+N_{\eta }-\frac{\mu }{6}(a_{2}-a_{1})^{2}. \end{aligned}
(10)
This completes the proof. □

### Remark 4

1. 1.

If we take $$\mu =0$$ and $$\eta (x,y)=x-y$$, then the Hermite–Hadamard-type inequality (10) is reduced to Hermite–Hadamard-type inequality for modified h-convex functions; for details, see [13].

2. 2.

If we put $$h(t)=t$$ in (10), then we get a Hermite–Hadamard-type inequality for generalized strongly convex functions; see [12].

3. 3.

If we take $$\mu =0$$, $$\eta (x,y)=x-y$$ and $$h(t)=t$$, then inequality (10) is reduced to a Hemite–Hadard-type inequality for classical convex functions.

Now we prove the following lemma by using technique of [25]. This lemma has the crucial fact that generalized strongly modified h-convex functions behave like classic convex functions.

### Lemma 1

Letgbe a generalized modifiedh-convex function, and suppose that$$\eta (x,y)=-\eta (y,x)$$. Then
\begin{aligned} g(a_{1}+a_{2}-x)\leq g(a_{1})+g(a_{2})-g(x) \quad \forall x\in [a_{1},a_{2}], \end{aligned}
where$$x=ta_{1}+(1-t)a_{2}$$and$$t\in [0,1]$$.

### Proof

As g is generalized modified h-convex function, for $$x=ta_{1}+(1-t)a_{2}$$, we get
\begin{aligned} g(a_{1}+a_{2}-x) =&g\bigl((1-t)a_{1}+ta_{2} \bigr) \\ \leq & g(a_{1})+h(t)\eta \bigl(g(a_{2}),g(a_{1}) \bigr) \\ =&g(a_{1})+g(a_{2})-g(a_{2})-h(t)\eta (g(a_{1}),g(a_{2}) \\ =&g(a_{1})+g(a_{2})-\bigl[g(a_{2})+h(t)\eta (g(a_{1}),g(a_{2})\bigr] \\ \leq &g(a_{1})+g(a_{2})-g(x). \end{aligned}
This completes the proof. □

### Lemma 2

Letgbe q the generalized strongly modifiedh-convex function, and suppose that$$\eta (x,y)=-\eta (y,x)$$. Then
\begin{aligned} g(a_{1}+a_{2}-x)\leq g(a_{1})+g(a_{2})-g(x) \quad \forall x\in [a_{1},a_{2}], \end{aligned}
(11)
where$$x=ta_{1}+(1-t)a_{2}$$and$$t\in [0,1]$$.

### Proof

Let g be a generalized strongly modified h-convex function. Then for $$x=ta_{1}+(1-t)a_{2}$$, we get
\begin{aligned} g(a_{1}+a_{2}-x) =&g\bigl((1-t)a_{1}+ta_{2} \bigr) \\ \leq & g(a_{1})+h(t)\eta \bigl(g(a_{2}),g(a_{1}) \bigr)-\mu t(1-t) (a_{1}-a_{2})^{2} \\ \leq &g(a_{1})+g(a_{2})-g(a_{2})-h(t)\eta (g(a_{1}),g(a_{2}) \\ &{}-\mu t(1-t) (a_{1}-a_{2})^{2}+2\mu t(1-t) (a_{1}-a_{2})^{2} \\ \leq &g(a_{1})+g(a_{2})-\bigl[g(a_{2})+h(t) \eta (g(a_{1}),g(a_{2})-\mu t(1-t) (a _{1}-a_{2})^{2} \bigr] \\ \leq &g(a_{1})+g(a_{2})-g(x). \end{aligned}
This completes the proof. □

It is very interesting that when g is a modified h-convex function [13], generalized modified h-convex, or generalized strongly modified h-convex function, then inequality (11) holds.

### Theorem 3

(Fejér-type inequality)

Let$$g:[a_{1},a _{2}]\rightarrow \mathbb{R}$$be a generalized strongly modifiedh-convex, and let$$w:[a_{1},a_{2}]\rightarrow \mathbb{R}$$be nonnegative, integrable, and symmetric with respect to$$\frac{a_{1}+a _{2}}{2}$$. Then
\begin{aligned}& g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \int _{a_{1}}^{a_{2}}w(x)\,dx +\frac{ \mu }{4} \int _{a_{1}}^{a_{2}}(a_{1}+a_{2}-2x)w(x) \,dx -N_{\eta }(a_{1},a _{2}) \\& \quad \leq \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx \\& \quad \leq \frac{g(a_{1})+g(a_{2})}{2} \int _{a_{1}}^{a_{2}}w(x)\,dx+T_{\eta }(a _{1},a_{2})-\mu \int _{a_{1}}^{a_{2}}(x-a_{2}) (a_{1}-x)w(x)\,dx, \end{aligned}
(12)
where
\begin{aligned}& N_{\eta }(a_{1},a_{2})=h\biggl( \frac{1}{2}\biggr) \int _{a_{1}}^{a_{2}}\eta \bigl(g(a _{1}+a_{2}-x),g(x) \bigr)w(x)\,dx, \\& T_{\eta }(a_{1},a_{2})=\frac{\eta (g(a_{1}),g(a_{2}))}{2} \int _{a_{1}} ^{a_{2}} h \biggl(\frac{x-a_{2}}{a_{1}-a_{2}} \biggr) w(x)\,dx. \end{aligned}

### Proof

Let g be a generalized strongly modified h-convex function. Then
\begin{aligned}& \begin{aligned}&\begin{aligned} g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \int _{a_{1}}^{a_{2}}w(x)\,dx ={}& \int _{a_{1}}^{a_{2}}g \biggl(\frac{a_{1}+a_{2}-x+x}{2} \biggr)w(x)\,dx \\ \leq {}& \int _{a_{1}}^{a_{2}} g(x)w(x)\,dx \\ &{}+h\biggl(\frac{1}{2}\biggr) \int _{a_{1}}^{a_{2}} \eta \bigl(g(a_{1}+a_{2}-x),g(x) \bigr)w(x)\,dx \\ &{}- \int _{a_{1}}^{a_{2}} \mu \frac{1}{2}\biggl(1- \frac{1}{2}\biggr) (2x-a_{1}-a_{2})^{2}w(x) \,dx, \end{aligned} \\ &g \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \int _{a_{1}}^{a_{2}}w(x)\,dx +\frac{ \mu }{4} \int _{a_{1}}^{a_{2}}(a_{1}+a_{2}-2x)^{2}w(x) \,dx-N_{\eta }(a _{1},a_{2}) \\ &\quad \leq \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx. \end{aligned} \end{aligned}
(13)
In the right hand-side of inequality (13), put $$x=ta_{1}+(1-t)a _{2}$$. Then
\begin{aligned}& \begin{aligned}& \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx=(a_{2}-a_{1}) \int _{0}^{1}g\bigl(ta_{1}+(1-t)a _{2}\bigr)w\bigl(ta_{1}+(1-t)a_{2}\bigr)\,dt, \\ &\begin{aligned} \frac{1}{a_{2}-a_{1}} \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx \leq {}& \int _{0} ^{1}g(a_{2})w \bigl(ta_{1}+(1-t)a_{2}\bigr)\,dt \\ &{} +\eta \bigl(g(a_{1}),g(a_{2})\bigr) \int _{0}^{1}h(t)w\bigl(ta_{1}+(1-t)a_{2} \bigr)\,dt \\ &{}-\mu (a_{2}-a_{1})^{2} \int _{0}^{1}t(1-t)w\bigl(ta_{1}+(1-t)a_{2} \bigr)\,dt. \end{aligned} \end{aligned} \end{aligned}
(14)
Similarly, if we put $$x=ta_{2}+(1-t)a_{1}$$ in the right-hand side of inequality (13), then we get the inequality
\begin{aligned} \frac{1}{a_{2}-a_{1}} \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx \leq & \int _{0} ^{1}g(a_{1})w \bigl(ta_{2}+(1-t)a_{1}\bigr)\,dt \\ &{}+\eta \bigl(g(a_{2}),g(a_{1})\bigr) \int _{0}^{1}h(t)w\bigl(ta_{2}+(1-t)a_{1} \bigr)\,dt \\ &{}-\mu (a_{2}-a_{1})^{2} \int _{0}^{1}t(1-t)w\bigl(ta_{2}+(1-t)a_{1} \bigr)\,dt. \end{aligned}
(15)
Adding inequalities (14) and (15), where w is symmetric, we get
\begin{aligned}& \frac{2}{a_{2}-a_{1}} \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx \\& \quad \leq \bigl(g(a _{1})+g(a_{2}) \bigr) \int _{0}^{1}w\bigl(ta_{1}+(1-t)a_{2} \bigr)\,dt \\& \qquad{} + \bigl[\eta \bigl(g(a_{1}),g(a_{2})\bigr)+\eta \bigl(g(a_{2}),g(a_{1})\bigr) \bigr] \int _{0}^{1}h(t)w\bigl(ta_{1}+(1-t)a_{2} \bigr)\,dt \\& \qquad {}-2\mu (a_{2}-a_{1})^{2} \int _{0}^{1}t(1-t)w\bigl(ta_{1}+(1-t)a_{2} \bigr)\,dt. \end{aligned}
(16)
Putting $$x=ta_{1}+(1-t)a_{2}$$ in the right-hand side of inequality (16), we have
\begin{aligned}& \begin{aligned}&\begin{aligned} \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx \leq {}& \frac{ (g(a_{1})+g(a_{2}) )}{2} \int _{a_{1}}^{a_{2}}w(x)\,dx \\ & {}+ \frac{ [\eta (g(a_{1}),g(a_{2}))+\eta (g(a_{2}),g(a_{1})) ]}{2} \int _{a_{1}}^{a_{2}}h(\frac{x-a_{2}}{a_{1}-a_{2}}w(x)\,dx \\ &{}-\mu \int _{a_{1}}^{a_{2}}(x-a_{2}) (a_{1}-x)w(x)\,dx, \end{aligned} \\ &\begin{aligned} \int _{a_{1}}^{a_{2}}g(x)w(x)\,dx \leq {}& \frac{ (g(a_{1})+g(a_{2}) )}{2} \int _{a_{1}}^{a_{2}}w(x)\,dx+ T_{\eta }(a_{1},a_{2}) \\ -{}&\mu \int _{a_{1}}^{a_{2}}(x-a_{2}) (a_{1}-x)w(x)\,dx. \end{aligned} \end{aligned} \end{aligned}
(17)
Now from inequalities (13) and (17) we get Fejér-type inequality (12) for generalized strongly modified h-convex functions. □

### Remark 5

1. 1.

If $$h(t)=t$$, then inequality (12) reduced to Fejér type inequality for generalized strongly convex functions, see [12].

2. 2.

If we put $$\mu =0$$ and $$\eta (x,y)=x-y$$ then inequality (12) becomes a Fejér-type inequality for modified h-convex functions; see [13].

3. 3.

If we put $$\mu =0$$, $$\eta (x,y)=x-y$$, and $$h(t)=t$$, then inequality (12) is reduced to a Fejér-type inequality for classical convex functions.

## Notes

### Availability of data and materials

Data are included within this paper.

### Authors’ contributions

All authors have equal contribution. All authors read and approved the final manuscript.

Not applicable.

### Competing interests

Authors of this paper declare that they have no competing interests.

## References

1. 1.
Barani, A., Ghazanfari, A.G., Dragomir, S.S.: Hermite–Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012(1), 247 (2012)
2. 2.
Bessenyei, M., Páles, Z.: Characterizations of convexity via Hadamard’s inequality. Math. Inequal. Appl. 9(1), 53–62 (2006)
3. 3.
Dragomir, S.S., Pearce, C.: Selected topics on Hermite–Hadamard inequalities and applications. Math. Prepr. Arch. 2003(3), 463–817 (2003) Google Scholar
4. 4.
Dragomir, S.S.: Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecciones 34(4), 323–341 (2015)
5. 5.
Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952) (1988)
6. 6.
Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality. Springer, Berlin (2009)
7. 7.
Merentes, N., Nikodem, K.: Remarks on strongly convex functions. Aequ. Math. 80(1–2), 193–199 (2010)
8. 8.
Tseng, K.L., Hwang, S.R., Dragomir, S.S.: Fejér-type inequalities (I). J. Inequal. Appl. 2010(1), 531976 (2010)
9. 9.
Niculescu, C., Persson, L.E.: Convex Functions and Their Applications. Springer, New York (2006)
10. 10.
Peajcariaac, J.E., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, San Diego (1992) Google Scholar
11. 11.
Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)
12. 12.
Awan, M.U.: On strongly generalized convex functions. Filomat 31(18), 5783–5790 (2017)
13. 13.
Noor, M., Noor, K., Awan, U.: Hermite–Hadamard type inequalities for modified h-convex functions. Transylv. J. Math. Mech. 2014, 6 (2014)
14. 14.
Noor, M.A., Noor, K.I., Iftikhar, S., Awan, M.U.: Strongly generalized harmonic convex functions and integral inequalities. J. Math. Anal. 7(3), 66–71 (2016)
15. 15.
Bessenyei, M., Páles, Z.: Hermite–Hadamard inequalities for generalized convex functions. Aequ. Math. 69(1), 32–40 (2005)
16. 16.
Mitrinovic, D.S., Vasic, P.M.: Analytic Inequalities (Vol. 1). Springer, Berlin (1970)
17. 17.
Mordukhovich, B.S., Nam, N.M.: An easy path to convex analysis and applications. Synth. Lect. Math. Stat. 6(2), 1–218 (2013)
18. 18.
Rockafellar, R.T.: Convex Analysis (Vol. 28). Princeton University press, Princeton (1970)
19. 19.
Zabandan, G., Bodaghi, A., Kiliçman, A.: The Hermite–Hadamard inequality for r-convex functions. Journal of Inequalities and Applications 2012(1), 215 (2012)
20. 20.
Ciobotariu-Boer, V.: Hermite–Hadamard and Fejér inequalities for Wright-convex functions. Octogon Math. Mag. 17(1), 53–69 (2009)
21. 21.
Varosanec, S.: On h-convexity. J. Math. Anal. Appl. 326(1), 303–311 (2007)
22. 22.
Shaikh, A.A., Iqbal, A., Mondal, C.K.: Some results on φ-convex functions and geodesic φ-convex functions. Differ. Geom. Dyn. Syst. 20, 159–170 (2018)
23. 23.
Finol, C.E., Wojtowicz, M.: Multiplicative properties of real functions with applications to classical functions. Aequ. Math. 59(1–2), 134–149 (2000)
24. 24.
Peajcariaac, J.E., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, San Diego (1992) Google Scholar
25. 25.
Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comen. 79(2), 265–272 (2010)

• Taiyin Zhao
• 1