Advertisement

The effects of tourniquet use on blood loss in primary total knee arthroplasty for patients with osteoarthritis: a meta-analysis

  • D. F. CaiEmail author
  • Q. H. Fan
  • H. H. Zhong
  • S. Peng
  • H. Song
Open Access
Systematic review
  • 157 Downloads

Abstract

Background

The tourniquet is a common medical instrument used in total knee arthroplasty (TKA). However, there has always been a debate about the use of a tourniquet and there is no published meta-analysis to study the effects of a tourniquet on blood loss in primary TKA for patients with osteoarthritis.

Methods

We performed a literature review on high-quality clinical studies to determine the effects of using a tourniquet or not on blood loss in cemented TKA. PubMed, Web of Science, MEDLINE, Embase, and the Cochrane Library were searched up to November 2018 for relevant randomized controlled trials (RCTs). We conducted a meta-analysis following the guidelines of the Cochrane Reviewer’s Handbook. We used the Cochrane Collaboration’s tool for assessing the risk of bias of each trial. The statistical analysis was performed with Review Manager statistical software (version 5.3).

Results

Eleven RCTs involving 541 patients (541 knees) were included in this meta-analysis. There were 271 patients (271 knees) in the tourniquet group and 270 patients (270 knees) in the no tourniquet group. The results showed that using a tourniquet significantly decreased intraoperative blood loss (P < 0.002), calculated blood loss (P < 0.002), and the time of operation (P < 0.002), but tourniquet use did not significantly decrease postoperative blood loss (P > 0.05), total blood loss (P > 0.05), the rate of transfusion (P > 0.05), and of deep vein thrombosis (DVT) (P > 0.05) in TKA.

Conclusions

Using a tourniquet can significantly decrease intraoperative blood loss, calculated blood loss, and operation time but does not significantly decrease the rate of transfusion or the rate of DVT in TKA. More research is needed to determine if there are fewer complications in TKA without the use of tourniquets.

Keywords

Total knee arthroplasty Tourniquet Blood loss Complications 

Abbreviations

CI

Confidence interval

SD

Standard deviation

DVT

Deep vein thrombosis

PE

Pulmonary embolism

RCTs

Randomized controlled trials

TKA

Total knee arthroplasty

WMD

Weighted mean difference

Introduction

The tourniquet is a common medical instrument used in total knee arthroplasty (TKA). A recent study of the American Association of Hip and Knee Surgeons found that approximately 95% of surgeons used tourniquets during TKA [1]. However, there has always been a debate about the pros and cons of tourniquet use [2]. For supporters, the tourniquet has several advantages in TKA: (1) a tourniquet can provide a bloodless field of view for surgery, (2) a tourniquet may help reduce intraoperative blood loss and improve cement penetration, and (3) a tourniquet could also shorten the operation time [3]. The disadvantages of tourniquet use mainly include damaging blood vessels and local soft tissue and increasing fibrinolytic activity [4]. Although tranexamic acid can decrease fibrinolytic activity, when combined with the use of a tourniquet, fibrinolytic activity will increase [5]. A tourniquet can also lead to local tissue swelling or hypoxia, which then affects wound healing [6, 7, 8] and produces more pain in the immediate post-operative surgery [3, 9]. Applying a tourniquet to the quadriceps femoris can affect the intraoperative patellar tracking and disturb the surgeon’s judgment of this movement. Tourniquets are also thought to be associated with an increased risk of deep vein thrombosis (DVT), wound infection or poor healing, postoperative dysfunction, and increased blood loss [7]. Moreover, some studies found that the use of a tourniquet may increase postoperative hidden blood loss [10].

There is no agreement on the pros and cons of tourniquet use in TKA. Some researchers wanted to gather reliable evidence by integrating high-quality clinical trial data. However, their results were not convincing, because the included patients had different primary diseases, such as rheumatoid arthritis, osteoarthritis, and even patients with revision, and different primary diseases may contribute to the incidence of complications and produce bias [11].

For these reasons, the conclusions of these meta-analyses need further support. Additionally, there is no published meta-analysis to study the effects of a tourniquet on blood loss in primary TKA for patients with osteoarthritis. Therefore, we aimed to assess the effect of tourniquet use on reducing blood loss and to determine the possible risks of using a tourniquet in primary TKA for patients with osteoarthritis.

Materials and methods

Search strategy

Our research began on September 1, 2018. The electronic databases of PubMed, Web of Science, MEDLINE, Embase, and the Cochrane Library were screened up to November 2018. The following keywords were used in the search: “total knee arthroplasty,” “total knee replacement,” “TKA,” “TKR,” “tourniquet,” and “randomized controlled trial.” Boolean operators were used to combine the terms. Reference lists of the relevant papers, especially papers included in the published meta-analyses, were screened. No restriction was made for publication status or language.

Study inclusion and exclusion criteria

This meta-analysis was based on the guidelines described in the Cochrane Handbook for Systematic Reviews of Interventions [12]. We included literature according to the following criteria: (1) randomized controlled trials (RCTs) that compared patients undergoing primary TKA with or without the use of a tourniquet and (2) trials in which the patients received TKA for osteoarthritis. The exclusion criteria were as follows: studies that included a different tourniquet application strategy or revision TKA, studies in which patients received TKA for rheumatoid arthritis, animal studies, and duplicate studies or data. Two of the authors (DF Cai and QH Fan) independently scanned the titles and abstracts of all relevant studies and selected the RCTs according to the inclusion and exclusion criteria. If there were discrepancies regarding study inclusion, a third reviewer (Song H) was consulted, and the disagreement was resolved through discussion.

Data extraction

Two of the authors (DF Cai and QH Fan) independently extracted relevant data based on a well-designed data extraction format that contains manuscript information, participant demographics, clinical outcomes, and any recorded complications. The clinical outcomes included total blood loss; calculated blood loss, which was calculated by the methods described by Gross [13] and thought to represent the true loss of blood; postoperative blood loss; intraoperative blood loss; blood transfusion volume; and blood transfusion rate. Recorded complications included any kind of wound complications, muscle or nerve injury, DVT, and pulmonary embolism (PE).

Discrepancies on data extraction were resolved by consulting another investigator (Song H); if the authors failed to reach a consensus, discrepancies were resolved by group discussion.

Risk of bias

Two independent researchers (DF Cai and QH Fan) assessed the risk of bias of each included RCT by using the risk assessment tool recommended by the Cochrane Reviewer’s Handbook 5.1.0 [14]. The assessment scale includes six domains: sequence generation, allocation concealment, blinding, incomplete outcome data, selective outcome reporting, and other potential threats to validity.

Any discrepancies in the risk assessment were resolved by consulting another investigator (Song H); if failing to reach a consensus, discrepancies were resolved by group discussion.

Statistical analysis

The analysis was conducted using Review Manager statistical software (version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). For continuous outcome data, a weighted mean difference (WMD) and 95% confidence interval (CI) were calculated by means and standard deviations (SDs). For dichotomous outcomes, the risk ratio or relative risk (RR) and 95% CI were calculated as the summary statistics. Statistical heterogeneity was determined by the chi-square test and I2. A value of I2 < 25% indicated low statistical heterogeneity; 25% ≤ I2 < 50% indicated moderate statistical heterogeneity; and 50% ≤ I2 < 75% indicated high statistical heterogeneity [15]. P < 0.05 was considered to be statistically significant. A random-effects analysis was used to synthesize heterogeneous data, and a fixed-effects analysis was used to synthesize data when the data were not heterogeneous [16].

Result

Selection process of the included studies

By comprehensive review of the electronic databases, a total of 1535 articles were initially identified. Of these, 194 articles were from PubMed, 598 articles were from Web of Science, 512 articles were from MEDLINE, 203 articles were from Embase, and 28 articles were from the Cochrane Library. A total of 547 articles were excluded as duplicates, and 956 articles were excluded by scanning the titles and the abstracts. After reading the full texts, 11 articles were excluded since they only compared the effects of releasing tourniquet after wound closure with those before wound closure, and 10 articles were excluded because patients with different primary diseases were included. Finally, a total of 11 articles including 541 patients (541 knees) were included in this meta-analysis [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. There were 271 patients (271 knees) in the tourniquet group and 270 patients (270 knees) in the no tourniquet group. A flowchart of RCT selection is shown in Fig. 1, and the characteristics of the included articles are shown in Table 1.
Fig. 1

Flowchart showing the selection process of randomized controlled trials

Table 1

Characteristics of the included articles

Study

Year

Sample size

Sex (M/F)

Mean age (years)

BMI (kg/m2)

Cemented

Prosthesis type

Patellar resurfacing

Thromboprophylaxis

Hemostasis

  

T

NT

T

NT

T

NT

T

NT

     

P. Aglietti

1999

10

10

3/7

4/6

70.0

68.0

27.9

27.3

Y

M.B.K, Zimmer

NS

NS

NS

H.M. Wakankar

1999

37

40

11/26

14/26

72.5

71.8

NS

NS

Y

Insall-Burstein

Y

Warfarin

NS

Eric Vanden

2002

40

40

9/31

16/24

72.5

68.5

NS

NS

Y

Wallaby I, Protek

NS

NS

NS

G. Matziolis

2005

10

10

2/8

3/7

72.4

76.6

28.3

29.5

Y

PFC Sigma, Depuy

N

NS

NS

K. Kageyama

2007

11

11

2/9

2/9

73.0

76.0

26.6

24.7

NS

NS

NS

NS

NS

Ta-Wei Tai

2012

36

36

9/27

8/28

72.1

71.5

28.6

27.9

Y

Genesis II or U2

NS

NS

NS

Hakan Ledin

2012

25

23

10/15

9/14

70.0

71.0

29.0

28.0

Y

NexgenCR, Zimmer

NS

Low-molecular-weight

NS

David Liu

2014

10

10

7/3

9/1

67.0

70.0

25.6

27.1

Y

NS

Y

NS

NS

Ashir Ejaz

2014

33

31

18/15

17/14

68.0

68.0

25.0

25.0

Y

NexgenCR, Zimmer

Y

Rivaroxaban

Tranexamic

Ashir Ejaz

2015

31

31

16/15

17/14

68.3

68.2

25.1

25.2

Y

NS

Y

NS

NS

A. Douglas

2016

28

28

16/12

16/12

62.0

62.0

29.0

29.0

Y

NS

N

Y

NS

T tourniquet, NT no tourniquet

Risk of bias assessment

In eight RCTs [17, 18, 20, 21, 22, 24, 25, 26, 27] of those included, the methods of randomization were described, and the allocation of patients was concealed by using sealed envelopes. None of the studies blinded the surgeons. Seven RCTs [20, 21, 22, 24, 25, 26, 27] involved blinding of the outcome assessments. All but one RCT [25] afforded complete outcome data, and none of the included RCTs exhibited selective outcome reporting. The results are summarized in Fig. 2.
Fig. 2

Risk of bias summary. Green indicates that the criterion is satisfied. Yellow indicates that it is unclear whether the criterion is satisfied or not. Red indicates that the study did not meet the criterion

Clinical outcome measures

Among the included studies, five [17, 19, 21, 22, 27] provided data on intraoperative blood loss. There was a significant difference between groups in terms of intraoperative blood loss, and the pooled data showed that application of a tourniquet decreased intraoperative blood loss by 143.55 mL (WMD = − 143.55 mL; 95% CI, 204.59 to − 82.52; n = 234; P < 0.00001; I2 = 94%), as shown in the forest plot (Fig. 3).
Fig. 3

Forest plot for intraoperative blood loss

Four of the included studies [19, 24, 25, 26] reported the volume of postoperative blood loss. Postoperative blood loss was measured by calculating the postoperative blood drainage volumes. Pooled data showed no significant difference between the groups in terms of postoperative blood loss (WMD = 24.07 mL; 95% CI, − 246.14 to 294.28; n = 197; P = 0.86; I2 = 86%), as shown in Fig. 4.
Fig. 4

Forest plot for postoperative blood loss

Three studies [17, 19, 21] reported data on total blood loss. Total blood loss means the sum of intraoperative and postoperative blood loss. No significant difference was observed between the tourniquet and no tourniquet groups in terms of postoperative blood loss (WMD = 17.56 mL; 95% CI, − 140.44 to 175.57; n = 98; P = 0.83; I2 = 82%), as shown in Fig. 5.
Fig. 5

Forest plot for total blood loss

There were three studies [22, 24, 25] that met the inclusion criteria and provided data on calculated blood loss. Pooled data showed that calculated blood loss was significantly less in the tourniquet group (WMD = − 125.41 mL; 95% CI, − 193.26 to − 57.56; n = 200; P = 0.0003; I2 = 26%). The results are presented as a forest plot (Fig. 6).
Fig. 6

Forest plot for calculated blood loss

There was no significant difference between the tourniquet and no tourniquet groups in terms of transfusion rate among five studies [18, 22, 25, 26, 27]. The pooled data (RR = 1.56; 95% CI, 0.63 to 3.88; n = 222; P = 0.34; I2 = 0%) are presented in a forest plot (Fig. 7).
Fig. 7

Forest plot for transfusion rate

Three studies [23, 24, 27] provided data on the rate of DVT occurrence. However, any significant difference failed to be detected. The pooled data (RR = 2.19; 95% CI, 0.50 to 9.48; n = 221; P = 0.30; I2 = 0%) are presented in a forest plot (Fig. 8).
Fig. 8

Forest plot for DVT rate

The operation time was able to be extracted from ten included studies [17, 18, 19, 20, 21, 22, 24, 25, 26, 27]. The forest plot of operation time showed that a significant difference existed between the two groups. Tourniquet use significantly decreased the operation time of TKA (WMD = − 1.08; 95% CI, − 1.50 to − 0.66; n = 464; P < 0.00001; I2 = 0%) (Fig. 9).
Fig. 9

Forest plot for operation time

Discussion

The main finding of the current meta-analysis was that using a tourniquet could significantly decrease the volume of intraoperative blood loss and the calculated blood loss. However, using a tourniquet did not significantly decrease postoperative blood loss, total blood loss, the rate of transfusion, or the rate of DVT in TKA surgery. The operation time with a tourniquet was significantly shorter than that without a tourniquet. However, the mean difference in operation time between using a tourniquet and not using a tourniquet was small.

The result showing that a tourniquet effectively reduced intraoperative blood loss was consistent with the result of previous meta-analyses [28, 29] (intraoperative blood loss: − 161.13 [− 203.52, − 118.74], 295 to 631 mL, 88.06–450.39, 279.82 to 116.60). Controlling intraoperative blood loss during TKA has at least two benefits: (1) it can provide a bloodless field of view and (2) it might be beneficial for bone cement to be able to penetrate bone trabeculae, which may contribute to increased stability of the prosthesis [30]. These benefits are the main reasons that surgeons choose to use tourniquets.

Furthermore, the necessity of a tourniquet is still debatable. Our meta-analysis confirmed that tourniquets can effectively decrease intraoperative blood loss but cannot decrease total blood loss. However, Alcelik et al. and Tai et al. [4, 31] found that the use of a tourniquet reduced the total blood loss by reducing intraoperative blood loss. However, some included studies in their analyses contained patients with rheumatoid arthritis, prosthesis revision, or osteonecrosis [32, 33]. Moreover, some included studies were nonrandomized control studies [34]. These confounders might result in bias and made the conclusions inconsistent with those of our study. In this meta-analysis, we only chose the studies that excluded these confounders, and we chose to include studies in which all patients underwent TKA for primary osteoarthritis. Therefore, the conclusions of our study should be more reliable.

Postoperative drainage

Postoperative drainage volume might be influenced by many factors. The methods of drain use can significantly influence postoperative drainage volume. Stucinskas et al. and Shen et al. found the 4-h clamped drainage after TKA reduced the volume of postoperative drainage [35, 36].

Raleigh et al. concluded that clamping drains intermittently resulted in significantly less postoperative drainage than that observed with continuous suction drainage [37]. Park et al. found that intraarticular tranexamic acid administration plus 30-min drain clamping also significantly reduced postoperative drainage [38].

The use of a suction drain is another factor influencing postoperative drainage volume. According to Vandenbussche’s study, the blood drainage volume could reach 420–530 mL with the use of a suction drain [24]. Furthermore, according to the study by Aglietti et al., the blood drainage volume was only 290 mL without suction [19].

Our study found that the use of a tourniquet did not affect postoperative drainage volume. However, there were no similar patterns with the use of drainages in the included studies. Moreover, postoperative drainage might be affected by other factors, such as different hemostasis and anticoagulant methods. Therefore, the effect of a tourniquet on postoperative drainage volume needs to be further confirmed by more high-quality studies.

Calculated blood loss

It was thought that calculated blood loss was more accurate than measured blood loss [39, 40]. Calculated blood loss contains recessive blood loss, which is believed to be caused by red blood cells entering the interstitial spaces [41]. The volume of calculated blood loss might be more than twice that of measured blood loss [13, 42]. Our study found that tourniquet use significantly reduced calculated blood loss. This outcome is different from previous findings. In contrast, Alcelik et al. thought that a tourniquet may slightly increase calculated blood loss, but there was no significant difference [4]. In addition, other studies had similar conclusions [28, 29, 43]. However, some included studies in the previous meta-analysis contained patients with rheumatoid arthritis, which might introduce major confounders to the results. According to Harvey’s study, the application of a tourniquet may increase fibrinolytic activity [32]. Rheumatoid arthritis patients might be more sensitive to tourniquet injuries, and their volume of postoperative blood loss might be more than that from ordinary patients. However, for patients with osteoarthritis, tourniquets can reduce the time of wound bleeding and reduce the extent of red blood cell infiltration into tissue space, reducing the amount of recessive blood loss, thereby reducing the calculated blood loss.

Transfusion rate

Despite the fact that calculated blood loss and intraoperative blood loss were significantly different, our meta-analysis found no significant differences in the rate of transfusions between the tourniquet group and the no tourniquet group. This finding was consistent with the results of other meta-analyses. Tourniquets are not the only factor affecting blood transfusion rates. The blood transfusion standards in the included studies were not uniform and were influenced by the patient’s age, general physical conditions, and basic disease states. So, although the current findings are consistent, more high-quality studies are still needed to confirm whether tourniquets affect blood transfusion rates.

Operation time

Our study confirmed that tourniquet use was effective in reducing operative time compared with no tourniquet use. A tourniquet can provide surgeons with a bloodless surgery field and facilitate the clear identification of anatomical structures during surgery, which might be conducive to shortening the operation time. Moreover, if the operation is performed without a tourniquet, more electrocoagulation and wound irrigation may be required during the operation. These additional procedures can increase the operation time. Zhang et al. determined that a tourniquet could reduce the operation time [28], which is consistent with our findings. However, it is worth noting that their study included patients with rheumatoid arthritis and patients undergoing revision surgery. These confounders might lead to biased results, because revision surgery requires additional surgical procedures, and rheumatoid patients might need more electrocoagulation. Our study excluded patients with rheumatoid arthritis and patients undergoing revisions, so the result of this meta-analysis is more reliable.

Incidence of DVT

In this study, we found that the use of a tourniquet did not significantly increase the incidence of DVT. This finding was consistent with previous studies [29, 43, 44]. However, tourniquets are a potential risk factor for DVT. Parmet et al. found that the incidence of DVT with a tourniquet was 5.33 times higher than that with no tourniquet [45]. In addition, the incidence of DVT is affected by other factors, such as the administration of anticoagulant drugs, time until rehydration, and tourniquet pressure. In our meta-analysis, some included studies used anticoagulants [17, 19], and some did not use anticoagulants [18]. The same problem existed in other meta-analysis studies [44, 46]. These differences in inclusion criteria may lead to inconsistent results from different studies. Therefore, further high-quality studies are needed to confirm whether tourniquet use is an independent risk factor for DVT.

Other complications

Because of insufficient data in the included literature, the current meta-analysis could not confirm whether there was a difference between using a tourniquet and not using a tourniquet in the incidence rates of some outcomes (i.e., wound hematoma, wound oozing, skin blistering, muscle injury, nerve palsy, and PE). The use of tourniquets might lead to more superficial infections of wounds [47]. However, Wakankar et al. determined that there was no difference between using tourniquets and not using tourniquets in terms of wound complications [23]. According to our study, 13 min was the longest time that was saved by the application of a tourniquet, and some RCTs found that a shorter operation time did not decrease the incidence of postoperative complications. Therefore, whether the shortening of operation time can decrease wound complications is still unclear at present [7, 29, 48]. Preoperative coexisting diseases, such as atherosclerosis, blood hypercoagulability, poor blood glucose, or uncontrolled blood pressure, were associated with the increasing incidence of postoperative complications. Tourniquets should be avoided in these patients, but we could not identify such patients from the current study. Patients with coexisting diseases in an RCT might affect the physician’s judgment on whether tourniquets cause certain complications [11]. Therefore, the current meta-analysis could not confirm whether the use of a tourniquet would increase the incidence of some surgical complications (i.e., wound hematoma, wound oozing, skin blistering, muscle injury, nerve palsy, and PE.)

Limitations

The current meta-analysis has several limitations. Firstly, in some studies, the time for loosening the tourniquet was different. Some studies [19, 22] loosened the tourniquet before closing the incision, and some [24, 25, 26] loosened the tourniquet after applying the elastic bandage. Secondly, some studies differed in drainage patterns, hemostasis, and anticoagulation regimens, and this might result in a bias. Thirdly, in the included studies, none of the surgeons were blinded.

Conclusions

According to the current meta-analysis, using a tourniquet may significantly decrease intraoperative blood loss, calculated blood loss, and the operation time, but tourniquet use did not significantly decrease the rate of blood transfusion or the rate of DVT in TKA. More research is needed to determine if there are fewer complications without the use of tourniquets in TKA surgery.

Notes

Acknowledgments

Not applicable.

Authors’ contributions

DFC participated in the entire procedure, including the literature search, data extraction, statistical analysis, and drafting of the manuscript. QHF and PS participated in the literature search, data extraction, and statistical analyses. HHZ and SH contributed to the statistical analysis, revision of the manuscript, and preparation of the figures and tables. All authors read and approved the final manuscript.

Funding

The authors declare that they have no sources of funding for the research.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Berry DJ, Bozic KJ. Current practice patterns in primary hip and knee arthroplasty among members of the American Association of Hip and Knee Surgeons. J Arthroplast. 2010;25(6 Suppl):2–4.CrossRefGoogle Scholar
  2. 2.
    Jarolem KL, Scott DF, Jaffe WL, et al. A comparison of blood loss and transfusion requirements in total knee arthroplasty with and without arterial tourniquet. Am J Orthop (Belle Mead NJ). 1995;24(12):906–9.Google Scholar
  3. 3.
    Parvizi J, Diaz-Ledezma C. Total knee replacement with the use of a tourniquet: more pros than cons. Bone Joint J. 2013;95-b(11 Suppl A):133–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Alcelik I, Pollock RD, Sukeik M, et al. A comparison of outcomes with and without a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Arthroplast. 2012;27(3):331–40.CrossRefGoogle Scholar
  5. 5.
    Schnettler T, Papillon N, Rees H. Use of a tourniquet in total knee arthroplasty causes a paradoxical increase in total blood loss. J Bone Joint Surg Am. 2017;99(16):1331–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Palmer SH, Graham G. Tourniquet-induced rhabdomyolysis after total knee replacement. Ann R Coll Surg Engl. 1994;76(6):416–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Carroll K, Dowsey M, Choong P, et al. Risk factors for superficial wound complications in hip and knee arthroplasty. Clin Microbiol Infect. 2014;20(2):130–5.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Weber AB, Worland RL, Jessup DE, et al. The consequences of lateral release in total knee replacement: a review of over 1000 knees with follow up between 5 and 11 years. Knee. 2003;10(2):187–91.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Rama KR, Apsingi S, Poovali S, et al. Timing of tourniquet release in knee arthroplasty. Meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2007;89(4):699–705.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Li B, Wen Y, Wu H, et al. The effect of tourniquet use on hidden blood loss in total knee arthroplasty. Int Orthop. 2009;33(5):1263–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Kvederas G, Porvaneckas N, Andrijauskas A, et al. A randomized double-blind clinical trial of tourniquet application strategies for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21(12):2790–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollock M, Fernandes RM, Becker LA, et al. What guidance is available for researchers conducting overviews of reviews of healthcare interventions? A scoping review and qualitative metasummary. Syst Rev. 2016;5(1):016–0367.CrossRefGoogle Scholar
  13. 13.
    Gross JB. Estimating allowable blood loss: corrected for dilution. Anesthesiology. 1983;58(3):277–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011;18(343).Google Scholar
  15. 15.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chiappelli F, Kasar VR, Balenton N, et al. Quantitative consensus in systematic reviews: current and future challenges in translational science. Bioinformation. 2018;14(2):86–92.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kageyama K, Nakajima Y, Shibasaki M, et al. Increased platelet, leukocyte, and endothelial cell activity are associated with increased coagulability in patients after total knee arthroplasty. J Thromb Haemost. 2007;5(4):738–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Matziolis G, Drahn T, Schroder JH, et al. Endothelin-1 is secreted after total knee arthroplasty regardless of the use of a tourniquet. J Orthop Res. 2005;23(2):392–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Aglietti P, Baldini A, Vena LM, et al. Effect of tourniquet use on activation of coagulation in total knee replacement. Clin Orthop Relat Res. 2000;371:169–77.CrossRefGoogle Scholar
  20. 20.
    Ejaz A, Laursen AC, Kappel A, et al. Tourniquet induced ischemia and changes in metabolism during TKA: a randomized study using microdialysis. BMC Musculoskelet Disord. 2015;16:326.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dennis DA, Kittelson AJ, Yang CC, et al. Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial. Clin Orthop Relat Res. 2016;474(1):69–77.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tai TW, Chang CW, Lai KA, et al. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012;94(24):2209–15.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wakankar HM, Nicholl JE, Koka R, et al. The tourniquet in total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 1999;81(1):30–3.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Vandenbussche E, Duranthon LD, Couturier M, et al. The effect of tourniquet use in total knee arthroplasty. Int Orthop. 2002;26(5):306–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ledin H, Aspenberg P, Good L. Tourniquet use in total knee replacement does not improve fixation, but appears to reduce final range of motion. Acta Orthop. 2012;83(5):499–503.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liu D, Graham D, Gillies K, et al. Effects of tourniquet use on quadriceps function and pain in total knee arthroplasty. Knee Surg Relat Res. 2014;26(4):207–13.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ejaz A, Laursen AC, Kappel A, et al. Faster recovery without the use of a tourniquet in total knee arthroplasty. Acta Orthop. 2014;85(4):422–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang W, Li N, Chen S, et al. The effects of a tourniquet used in total knee arthroplasty: a meta-analysis. J Orthop Surg Res. 2014;9(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tie K, Hu D, Qi Y, et al. Effects of tourniquet release on total knee arthroplasty. Orthopedics. 2016;39(4):e642–50.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Leon-Munoz VJ, Lison-Almagro AJ, Hernandez-Garcia CH, et al. Silicone ring tourniquet versus pneumatic cuff tourniquet in total knee arthroplasty surgery: a randomised comparative study. J Orthop. 2018;15(2):545–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tai TW, Lin CJ, Jou IM, et al. Tourniquet use in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1121–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Harvey EJ, Leclerc J, Brooks CE, et al. Effect of tourniquet use on blood loss and incidence of deep vein thrombosis in total knee arthroplasty. J Arthroplast. 1997;12(3):291–6.CrossRefGoogle Scholar
  33. 33.
    Tetro AM, Rudan JF. The effects of a pneumatic tourniquet on blood loss in total knee arthroplasty. Can J Surg. 2001;44(1):33–8.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Fukuda A, Hasegawa M, Kato K, et al. Effect of tourniquet application on deep vein thrombosis after total knee arthroplasty. Arch Orthop Trauma Surg. 2007;127(8):671–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Stucinskas J, Tarasevicius S, Cebatorius A, et al. Conventional drainage versus four hour clamping drainage after total knee arthroplasty in severe osteoarthritis: a prospective, randomised trial. Int Orthop. 2009;33(5):1275–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Shen PC, Jou IM, Lin YT, et al. Comparison between 4-hour clamping drainage and nonclamping drainage after total knee arthroplasty. J Arthroplast. 2005;20(7):909–13.CrossRefGoogle Scholar
  37. 37.
    Raleigh E, Hing CB, Hanusiewicz AS, et al. Drain clamping in knee arthroplasty, a randomized controlled trial. ANZ J Surg. 2007;77(5):333–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Park JH, Choi SW, Shin EH, et al. The optimal protocol to reduce blood loss and blood transfusion after unilateral total knee replacement: low-dose IA-TXA plus 30-min drain clamping versus drainage clamping for the first 3 h without IA-TXA. J Orthop Surg. 2017;25(3):2309499017731626.Google Scholar
  39. 39.
    Lotke PA, Faralli VJ, Orenstein EM, et al. Blood loss after total knee replacement. Effects of tourniquet release and continuous passive motion. J Bone Joint Surg Am. 1991;73(7):1037–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Levy AS, Marmar E. The role of cold compression dressings in the postoperative treatment of total knee arthroplasty. Clin Orthop Relat Res. 1993;297:174–8.Google Scholar
  41. 41.
    Erskine JG, Fraser C, Simpson R, et al. Blood loss with knee joint replacement. J R Coll Surg Edinb. 1981;26(5):295–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Bourke DL, Smith TC. Estimating allowable hemodilution. Anesthesiology. 1974;41(6):609–12.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zhang P, Liang Y, He J, et al. Timing of tourniquet release in total knee arthroplasty: a meta-analysis. Medicine (Baltimore). 2017;96(17):e6786.CrossRefGoogle Scholar
  44. 44.
    Huang Z, Ma J, Zhu Y, et al. Timing of tourniquet release in total knee arthroplasty. Orthopedics. 2015;38(7):445–51.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Parmet JL, Horrow JC, Berman AT, et al. The incidence of large venous emboli during total knee arthroplasty without pneumatic tourniquet use. Anesth Analg. 1998;87(2):439–44.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang W, Liu A, Hu D, et al. Effects of the timing of tourniquet release in cemented total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res. 2014;9:125.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Abdel-Salam A, Eyres KS. Effects of tourniquet during total knee arthroplasty. A prospective randomised study. J Bone Joint Surg Br. 1995;77(2):250–3.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Willis-Owen CA, Konyves A, Martin DK. Factors affecting the incidence of infection in hip and knee replacement: an analysis of 5277 cases. J Bone Joint Surg Br. 2010;92(8):1128–33.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Author(s). 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryAffiliated Hospital of Zunyi Medical CollegeZunyi CityChina

Personalised recommendations