Nanoscale Research Letters

, 14:44 | Cite as

Properties of the Geometric Phase in Electromechanical Oscillations of Carbon-Nanotube-Based Nanowire Resonators

  • Jeong Ryeol ChoiEmail author
  • Sanghyun Ju
Open Access
Nano Express


The geometric phase is an extra phase evolution in the wave function of vibrations that is potentially applicable in a broad range of science and technology. The characteristics of the geometric phase in the squeezed state for a carbon-nanotube-based nanowire resonator have been investigated by means of the invariant operator method. The introduction of a linear invariant operator, which is useful for treating a complicated time-dependent Hamiltonian system, enabled us to derive the analytical formula of the geometric phase. By making use of this, we have analyzed the time behavior of the geometric phase based on relevant illustrations. The influence of squeezing parameters on the evolution of the geometric phase has been investigated. The geometric phase, in large, oscillates, and the envelope of such oscillation increases over time. The rate of the increase of the geometric phase is large when the parameters, such as the classical amplitude of the oscillation, the damping factor, and the amplitude of the driving force, are large. We have confirmed a very sharp increase of the geometric phase over time in the case that the angular frequency of the system reaches near the resonance angular frequency. Our development regarding the characteristics of the geometric phase is crucial for understanding the topological features in nanowire oscillations.


Geometric phase Nanowire resonator Electromechanical oscillation Squeezed state Invariant operator Phase effect 



Carbon nanotube

EM waves

Electromagnetic waves


Time-dependent Hamiltonian system


Mechanical vibrations of the smallest resonators, such as carbon-nanotube-based (CNT-based) nanowires [1, 2, 3], semiconducting nanowires [4], graphenes [5], and levitated particles [6], have been a main research subject in the nanoscience community for over a decade. Active researches regarding electromechanical oscillations of nanowire resonators driven by an external periodic force have been performed in both theoretical and experimental spheres. In particular, CNT-based nanowire resonators have attracted considerable interest as nanoscale mechanical devices due to their extraordinary sensitivities with high-quality factors to a small perturbation from surroundings. Suspended CNT-based nanowire resonators are promising candidates for apparatuses measuring a wide range of physical quantities, such as EM waves [2], small forces [7], masses [8], temperatures [9], and noises [10].

Analyses of the quantal phase evolution in nanowire oscillations are required for elucidating underlying features of the system theoretically. Regarding quantum vibrational states of the CNT-based nanowire resonators [11], the geometric phase [12] as well as the usual dynamical phase emerges as a supplementary evolution of the phase. The geometric phase [12] is an anholonomic of a quantum state which can be applicable in diverse fields of physics. Analyses of the geometric phase can be potentially adopted in characterizing nano properties of nanowires, such as the resonance profiles [13, 14], strong quantum vibrations [15, 16], strain relaxation mechanisms [17, 18], the emergence of Dirac magnetoplasmons [19], and the topology of Aharonov-Bohm oscillations [20].

The study of the geometric phase associated with nonadiabatic dynamics may provide an insight for nanomechanical systems, which is necessary for the advancement of accurate simulation techniques [21]. The preparation, manipulation, and detection of quantum states are important factors in quantum technologies. The aim of the present research is to shed light on time behaviors of the geometric phase that takes place in quantum states of nanowire oscillations. To understand the mechanism of CNT-based nanowire vibrations, we will investigate the time evolution of the geometric phase in the squeezed state which is a classical-like quantum state like the coherent state. The merit of the squeezed state is that the uncertainty of a quadrature in that state can be reduced substantially at the expense of rising the uncertainty of the other quadrature, while such uncertainty modulation is impossible in the coherent state. In particular, we will analyze the effects of resonance on the geometric phase. Because the resonant energy is significantly different from the energy of the non-resonant state [22, 23], the topological behavior of the wave function is nontrivial and may be considerably deviated from the one in normal situations. The influence of the change of physical parameters and the squeezing parameters on the evolution of the geometric phase will also be rigorously analyzed. The geometric phases are ubiquitous in dynamical systems [24] and can be applied to various modern technologies, such as quantum computation [25], intensity interferometries [26], photonic multitasking [27], quantum-sensing protocols [28], and wave-stability measurements [29].

The Hamiltonian of the system involves time functions associated with the damping of the system and the external driving force. Hence, the system is a kind of time-dependent Hamiltonian systems (TDHSs) of which quantum mechanical problems are extensively studied up to recently. The time function in the Hamiltonian of a TDHS cannot be separated out from the function of canonical variables in most cases, leading the conventional separation of variables method for solving the Schrödinger equation being unavailable. An alternative powerful method developed for overcoming this difficulty is the invariant operator method which has been introduced by Lewis and Riesenfeld [30, 31]. This method is a very useful mathematical tool when we derive quantum solutions of a TDHS. Many quantum mechanical problems described by TDHSs are investigated based on this method. For instance, they include chaotic particle-scattering [32], light propagation in time-varying media [33], control of trapped driven electrons [34], and nonclassicality of quantum nanoelectronic circuits [35]. There is a variety of other methods for quantum mechanical treatments of TDHSs, which include unitary transformation method [36], Lie algebraic method [37], and Hamiltonian estimation method [38].

Regarding that the system is a TDHS, we use the invariant operator method in order to obtain quantum solutions of the system. A linear invariant operator which is represented in terms of the annihilation operator will be introduced. While the annihilation and the creation operators are represented in terms of time due to the time-dependence of the system, both the coherent and the squeezed states can be obtained using these ladder operators. The geometric phase of the system will be analytically evaluated by utilizing the wave function in the squeezed state. The time evolution of the geometric phase will be analyzed in detail on the basis of its illustrations depicted with diverse choices of parameters.


To investigate the geometric phase, we first need to setup the classical equation of motion of the nanowire tip. Because the geometric phase appears in the quantum wave evolution of a TDHS, it is necessary to derive wave functions in a specific quantum state that we manage. We will consider the squeezed state as mentioned in the introductory part. The wave functions in the diverse quantum states of a TDHS, including the squeezed state, can be obtained from the invariant operator method.

The equation of motion for the time-dependent amplitude x for a bending mode of a suspended carbon nanotube with an effective mass m is given by [1]
$$ \ddot{x}+\left(\frac{\omega_{0}}{Q} +\eta x^{2}\right) \dot{x}+\left(\omega_{0}^{2}+\beta x^{2}\right) x = f_{\mathrm{d}}\cos (\omega t), $$
where ω0 is the resonant angular frequency, Q the quality factor, fd the electrostatic driving force divided by m, η the nonlinear damping coefficient, and β the Duffing parameter. Let us assume for convenience that the displacement of the tip is sufficiently small relative to the CNT-wire length. Then, we can neglect the nonlinear terms in Eq. (1), leading to [2]
$$ \ddot{x}+\frac{\omega_{0}}{Q} \dot{x}+\omega_{0}^{2} x = f_{\mathrm{d}}\cos (\omega t). $$
The Hamiltonian of the system which yields Eq. (2) is given by
$$ \hat{H}= e^{-\gamma t} \frac{\hat{p}^{2}}{2m} +\frac{1}{2}me^{\gamma t} \left[\omega_{0}^{2} \hat{x}^{2} - 2f_{\mathrm{d}}\cos (\omega t)\hat{x}\right], $$
where γ=ω0/Q. The classical solution of Eq. (2) is composed of a complementary function Xc(t) and a particular solution Xp(t), which are given by
$$\begin{array}{@{}rcl@{}} & &X_{c}(t)=X_{c,0}e^{-\gamma t/2}\cos(\Omega t+\varphi), \end{array} $$
$$\begin{array}{@{}rcl@{}} & &X_{p}(t) =X_{p,0}\cos (\omega t - \delta), \end{array} $$
where Xc,0 is a constant, \(\Omega = \sqrt {\omega _{0}^{2} - \gamma ^{2}/4}\), φ is an arbitrary phase, and
$$\begin{array}{@{}rcl@{}} X_{p,0}&=&\frac{f_{\mathrm{d}}}{\sqrt{\left(\omega_{0}^{2} -\omega^{2}\right)^{2} + \gamma^{2} \omega^{2}}}, \end{array} $$
$$\begin{array}{@{}rcl@{}} \delta &=& \tan^{-1} \frac{\gamma \omega}{ \omega_{0}^{2} -\omega^{2}}. \end{array} $$
The classical solution in the momentum space is given in a similar way, where the complementary function is \(P_{c} (t) = m e^{\gamma t} \dot {X}_{c}(t)\) and the particular solution is \(P_{p} (t) = m e^{\gamma t} \dot {X}_{p}(t)\). To investigate the geometric phase of the system, we first need to derive quantum solutions. Notice that the Hamiltonian of the system given in Eq. (3) is explicitly dependent on time. In order to derive quantum solutions of the system, we use the invariant operator method [30, 31], which is a useful method when we treat such a time-varying system. An invariant operator \(\hat {I}\) of the system can be derived from the Liouville-von Neumann equation, which is given by \({d \hat {I}}/{d t} = {\partial \hat {I}}/{\partial t} + \left [\hat {I},\hat {H}\right ]/\left (i\hbar \right) = 0\). Hence, from a rigorous evaluation after inserting Eq. (3) into this equation, we have a linear invariant operator [34] of the form
$$ \hat{I} = \hat{A} e^{i\Omega t}, $$
where \(\hat {A}\) is the annihilation operator that is given by
$$ \begin{aligned} \hat{A} =& \left(2\hbar m\Omega\right)^{-1/2} \left[ m \left(\Omega+ i\frac{\gamma}{2} \right) e^{\gamma t/2}\left[\hat{x}-X_{p}(t)\right]\right.\\ & \left.+ie^{-\gamma t/2} \left[\hat{p}-P_{p}(t)\right]\! {\vphantom{\left(\Omega+ i\frac{\gamma}{2} \right)}}\right]. \end{aligned} $$

The hermitian adjoint of Eq. (9), \(\hat {A}^{\dagger }\), is the creation operator.

We can express the eigenvalue equation of \(\hat {A}\) as
$$ \hat{A} |A \rangle = A |A \rangle. $$
By evaluating the above equation, we have the expression of the eigenvalue such that
$$ A(t) = A(0) e^{-i\Omega t}, $$
where A(0)=A0eiφ with
$$ A_{0} = \left[m\Omega/(2\hbar)\right]^{1/2}X_{c,0}. $$
While the coherent state |A〉 is the eigenstate of \(\hat {A}\), the squeezed state is the eigenstate of an operator \(\hat {B}\) that is given by
$$ \hat{B} = \mu \hat{A} + \nu \hat{A}^{\dagger}, $$
where μ and ν are complex variables that yield the equation
$$ |\mu|^{2} - |\nu|^{2} =1. $$
If we write the eigenvalue equation of \(\hat {B}\) in the form
$$ \hat{B} |B \rangle = B |B \rangle, $$
|B〉 is the squeezed state. By solving this equation in the configuration space, we have
$$ {\begin{aligned} \langle {x}|B\rangle =&^{4}\!\!\!\sqrt{\frac{m \Omega e^{\gamma t}}{\hbar\pi(\mu-\nu)(\mu^{*}-\nu^{*})}} \exp \left\{- \frac{1}{\hbar (\mu-\nu)} \left[\frac{1}{2} m e^{\gamma t}\left({\vphantom{\frac{1}{2}}}(\mu+\nu)\Omega \right.\right.\right.\\ & \left. +\frac{i\gamma}{2}(\mu-\nu)\right)\left[x-X_{p}(t)\right]^{2} -[iP_{p}(t)(\mu-\nu)+ \left(2\hbar m \Omega e^{\gamma t}\right)^{1/2} \\ & \left. \left.\times(\mu A+\nu A^{*}) ]\left[x-X_{p}(t)\right] {\vphantom{\frac{1}{2} m e^{\gamma t}}}\right]-\frac{|A|^{2}+A^{2}}{2(\mu-\nu)(\mu^{*}-\nu^{*})} \right\}. \end{aligned}} $$

Thus, the wave function in the squeezed state has been derived as given in Eq. (16). Quantum features of the system can be clarified on the basis of such analytical description of the wave function. For μ=1 and ν=0, Eq. (16) reduces to the wave function in the coherent state, which is the eigenstate of Eq. (10) in the configuration space. The wave function, Eq. (16), will be used in the next section in order to derive the geometric phase in the squeezed state.

Results and Discussion

It is well known that the phase in the quantum wave evolution involves the geometric phase as well as the dynamical phase. The geometric phase was first discovered by Berry in 1984 [12] for a system evolving cyclically with an adiabatic change. According to the adiabatic theorem in quantum mechanics, an instantaneous eigenstate of a quantum state in a cyclic evolution in the parameter space will remain on the same state later, while there is an additional accumulation of the quantum phase which is the Berry phase. A generalization of the Berry phase in a way that it includes nonadiabatic, noncyclic, and/or non-unitary evolution of the quantum system is the geometric phase.

The geometric phase in the squeezed state is given by
$$ \gamma_{G}(t) = \int_{0}^{t} \langle B(t') |i\frac{\partial}{\partial t'}| B(t') \rangle dt' +\gamma_{G}(0). $$
The differentiation of the wave function with respect to time in configuration space becomes
$$ \frac{\partial \langle {x}|B\rangle}{\partial t} \,=\, \left\{ f_{1}(t) \!\left[x-X_{p}(t)\right]^{2}\,+\,f_{2}(t) \left[x\,-\,X_{p}(t)\right]\,+\,f_{3}(t) \right\}\! \!\langle {x}|B\rangle, $$
$$ f_{1}(t) = - \frac{m\gamma e^{\gamma t}}{2\hbar (\mu-\nu)} \left((\mu+\nu)\Omega + \frac{i\gamma}{2}(\mu-\nu) \right), $$
$$ {\begin{aligned} f_{2}(t) &= \frac{1}{\hbar (\mu-\nu)}\left[ \left((\mu+\nu)\Omega + \frac{i\gamma}{2}(\mu-\nu) \right) P_{p}(t) -i m e^{\gamma t} \right.\\ & \quad\times\left[\omega_{0}^{2} X_{p}(t) - f_{\mathrm{d}} \cos(\omega t)\right](\mu-\nu) +\left(2\hbar m \Omega e^{\gamma t}\right)^{1/2} \\ & \quad \left.\times\left(\frac{\gamma}{2}\left(\mu A + \nu A^{*}\right)-i\Omega \left(\mu A - \nu A^{*}\right) \right) \right], \\ \end{aligned}} $$
$$ {\begin{aligned} f_{3}(t) &\!= \frac{\gamma}{4}-\frac{1}{\hbar m e^{\gamma t}(\mu-\nu)} \left[iP_{p}(t)(\mu-\nu) + \left(2\hbar m\Omega e^{\gamma t}\right)^{1/2} \right.\\ & \quad\left.\times\left(\mu A+\nu A^{*}\right){\vphantom{\left(2\hbar m\Omega e^{\gamma t}\right)^{1/2}}}\right] P_{p}(t)+ \frac{i\Omega A^{2}}{(\mu-\nu)\left(\mu^{*}-\nu^{*}\right)}. \end{aligned}} $$
Further evaluation after inserting Eq. (18) into Eq. (17) gives
$$ {\begin{aligned} \gamma_{G}(t) =& \int_{0}^{t} dt' \left[ A_{0}^{2}\left(\frac{\gamma^{2}}{4\Omega}+\Omega + g_{1} \sin\left[2\left(\Omega t'+\varphi\right)\right] +g_{2} \cos\left[2\left(\Omega t'+\varphi\right)\right] \right) \right.\\ &\left.-A_{0}\left[ g_{3}(t') \sin\left(\Omega t'+\varphi\right) +g_{4}(t') \cos\left(\Omega t'+\varphi\right) \right]+ g_{5}(t') {\vphantom{\frac{\gamma^{2}}{4\Omega}}}\right] +\gamma_{G}(0), \end{aligned}} $$
$$\begin{array}{*{20}l} g_{1}~ &= \frac{\gamma}{2} + \frac{i\Omega \left(\mu\nu^{*}-\mu^{*}\nu\right)}{(\mu-\nu)\left(\mu^{*}-\nu^{*}\right)}, \end{array} $$
$$\begin{array}{*{20}l} g_{2}~ &= \frac{\gamma^{2}}{4\Omega}+\Omega\frac{2|\nu|^{2}- \left(\mu\nu^{*}+\mu^{*}\nu\right)}{(\mu-\nu) \left(\mu^{*}-\nu^{*}\right)}, \end{array} $$
$$\begin{array}{*{20}l} g_{3}(t) &= \left(\frac{2\Omega}{m\hbar e^{\gamma t}} \right)^{1/2}P_{p}(t), \end{array} $$
$$ {\begin{aligned} g_{4}(t) = \frac{1}{\sqrt{2\hbar\Omega}}\left(\frac{\gamma }{\sqrt{m e^{\gamma t}}}P_{p}(t) - 2\sqrt{m e^{\gamma t}}\left[\omega_{0}^{2} X_{p}(t) - f_{\mathrm{d}} \cos(\omega t)\right]\right), \end{aligned}} $$
$$ {\begin{aligned} g_{5}(t) &= \frac{P_{p}^{2}(t)}{\hbar m e^{\gamma t}}+\frac{\gamma^{2}}{8\Omega}\left[2|\nu|^{2}-\left(\mu\nu+\mu^{*}\nu^{*}\right) +1\right] \\ & \quad +\frac{i\gamma}{4(\mu-\nu)\left(\mu^{*}-\nu^{*}\right)} \left[|\mu|^{2}\left(\nu^{2}-\nu^{*2}\right)-|\nu|^{2}\left(\mu^{2}-\mu^{*2}\right)\right.\\ & \quad\left.+ (2|\nu|^{2}+1)\left(\mu\nu^{*}-\mu^{*}\nu\right) +(\mu-\mu^{*})(\nu-\nu^{*})\right]. \end{aligned}} $$

The last term in g5 that contains (μμ)(νν) is inadequate as a phase because this is a purely imaginary number. Hence, we now remove this term by choosing at least one of μ and ν as a real value. This remedy can always be done without loss of generality, because only the relative phase between μ and ν has physical meaning rather than their absolute phases.

From the execution of the integration in Eq. (22), we have
$$ {\begin{aligned} \gamma_{G}(t) &= A_{0}^{2}\left[\left(\frac{\gamma^{2}}{4\Omega}+\Omega\right)t + \frac{g_{1}}{\Omega}\sin(\Omega t+2\varphi) \sin(\Omega t) +\frac{g_{2}}{\Omega} \cos(\Omega t+2\varphi) \right.\\ & \quad\left.\times\sin(\Omega t) {\vphantom{\frac{\gamma^{2}}{4\Omega}}}\right]\!-A_{0}\left[ \left(\frac{2m\Omega}{\hbar} \right)^{1/2}\omega X_{p,0} \bar{g}_{3}(t) +\sqrt{\frac{2m}{\hbar\Omega}}\frac{1}{4\omega^{2}+\gamma^{2}}\bar{g}_{4}(t) \right]\\ &\quad+ \bar{g}_{5}(t) +\gamma_{G}(0), \end{aligned}} $$
where \(\bar {g}_{i}(t)~(i=3,4,5)\) are given by
$$ \bar{g}_{i}(t) = G_{i}(t) -G_{i}(0), $$
$$ {\begin{aligned} G_{3}(\tau) &= e^{\gamma \tau/2}\left(\frac{1}{4(\Omega+\omega)^{2}+\gamma^{2}} \left\{2(\Omega+\omega)\sin[(\Omega+\omega)\tau+\varphi-\delta] \right.\right.\\ & \quad\left.+\gamma \cos[(\Omega+\omega)\tau+\varphi-\delta] \right\}- \frac{1}{4(\Omega-\omega)^{2}+\gamma^{2}} \{ 2(\Omega-\omega) \\ & \quad\left.\left.\times\sin[(\Omega-\omega)\tau\,+\,\varphi\,+\,\delta]\!+\gamma \cos[(\Omega-\omega)\tau\,+\,\varphi\,+\,\delta]\right\} {\vphantom{\frac{1}{4(\Omega+\omega)^{2}+\gamma^{2}}}}\right),\\ \end{aligned}} $$
$$ {\begin{aligned} G_{4}(\tau) &= e^{\gamma \tau/2} \left\{X_{p,0} \left\{ \gamma\omega[ 2\omega\cos(\omega \tau-\delta)-\gamma \sin(\omega \tau-\delta)] -2\omega_{0}^{2} \right.\right.\\ &\quad\left.\times[2\omega\sin(\omega \tau-\delta)+\gamma \cos(\omega \tau-\delta)] {\vphantom{X_{p,0}}}\right\}+2f_{\mathrm{d}} [ 2\omega\sin(\omega \tau) \\ & \left.\left.\quad+\gamma \cos(\omega \tau)\right]{\vphantom{X_{p,0}}}\right\}, \\ \end{aligned}} $$
$$ {\begin{aligned} G_{5}(\tau) &= \frac{m\omega^{2}}{2\hbar}X_{p,0}^{2} \frac{e^{\gamma \tau}}{\gamma \left(4\omega^{2}+\gamma^{2}\right)} \left\{ \gamma^{2}+4\omega^{2} -\gamma^{2} \cos[2(\omega\tau -\delta)]\right.\\ & \quad\left.-2\gamma\omega \sin[2(\omega \tau -\delta)] {\vphantom{\gamma^{2}+4\omega^{2} -\gamma^{2}}}\right\} +\frac{\gamma^{2} \tau}{8\Omega}\left[2|\nu|^{2}-\left(\mu\nu+\mu^{*}\nu^{*}\right)+1\right] \\ & \quad+\frac{i\gamma \tau}{4(\mu-\nu)\left(\mu^{*}-\nu^{*}\right)} \left[|\mu|^{2}\left(\nu^{2}-\nu^{*2}\right)-|\nu|^{2}\left(\mu^{2}-\mu^{*2}\right)\right.\\ & \quad\left.+\left(2|\nu|^{2}+1\right)\left(\mu\nu^{*}-\mu^{*}\nu\right)\right]. \end{aligned}} $$

Thus, we have evaluated the full geometric phase in the squeezed state, which is given by Eq. (28) with Eqs. (23), (24), and (29)–(32).

The time evolution of the geometric phase has been illustrated in Figs. 1, 2, 3, and 4. From Fig. 1, we see that the geometric phase oscillates and the envelope of such oscillation increases over time. The increase of the envelope is greater when A0 is large. The pattern of the oscillation becomes gradually irregular as the values of μ and ν increase. Moreover, the amplitude of the oscillation becomes large as time goes by.
Fig. 1

Time evolution of the geometric phase for several different values of A0. The values of (μ, ν) used in the graphics are (1, 0) for a, (\(\sqrt {2}\), 1) for b, and (\(\sqrt {3}\), \(\sqrt {2}\)) for c. We have used m=1, ω0=1, ω=5, γ=0.35, fd=1, \(\hbar =1\), φ=0, and γG(0)=0. The phase and all parameters are taken to be dimensionless for convenience, and this convention will also be applied to the subsequent figures. Because A0 is given in terms of the classical amplitude Xc,0 of the complementary function [see Eq. (12)], we can confirm from the graphics that the geometric phase is large when the oscillation amplitude is high. We also see that the fluctuation of γG(t) becomes large as the values μ and ν increase under the condition given in Eq. (14)

Fig. 2

Time evolution of the geometric phase for several different values of γ. The value of ω used in the graphics is 0.3 for a, 0.99 for b, and 5 for c. The squeezing parameters chosen here are \(\mu =\sqrt {2}\) and ν=1; this choice gives q-squeezed state at initial time. Other quantities that we have used are m=1, ω0=1, A0=1, fd=1, \(\hbar =1\), φ=0, and γG(0)=0. We confirm that the geometric phase is large when the damping factor γ is large in most cases, but not all. The frequency of the case b is near to the resonant frequency, whereas those of a and c are far from the resonant one. The geometric phase for the resonant case (b) increases very rapidly over time

Fig. 3

ac This graphic is the same as Fig. 2, but for the case that the chosen squeezing parameters are \(\mu =\sqrt {2}\) and ν=−1 which give a p-squeezed state at initial time. From the fact that the overall graphics in this case are not so much different from the corresponding ones of Fig. 2, we can confirm that the evolution of γG(t) is nearly irrelevant to the types of squeezing so long as the absolute values of μ and ν do not change

Fig. 4

Time evolution of the geometric phase for several different values of fd. The value of ω used in the graphics is 0.3 for a and 5 for b. We have used \(\mu =\sqrt {2}\), ν=1, m=1, ω0=1, γ=0.3, A0=1, \(\hbar =1\), φ=0, and γG(0)=0. As the amplitude (fd) of the driving force increases, the geometric phase becomes large

The squeezing effects in the squeezed state depending on the squeeze parameter c where c=μ/ν has been investigated in ref. [39]. According to the analysis given in ref. [39] (see Fig. 1(a) in ref. [39]), the squeezed state illustrated in Fig. 2, which corresponds to \(c=\sqrt {2}\), is the q-squeezed state at initial time, while that in Fig. 3, which corresponds to \(c=-\sqrt {2}\), is the p-squeezed state in the same situation. By comparing Figs. 2 and 3 to each other, we can conclude that the geometric phase in the q-squeezed state is nearly the same as that in the p-squeezed state.

The effects of γ on the evolution of the geometric phase can be confirmed from Figs. 2 and 3. The geometric phase increases more rapidly when γ is large. By comparing Figs. 2a and 3a with Figs. 2c and 3c, we can confirm that the geometric phase varies somewhat rapidly when ω is greater than the resonance angular frequency.

The time behavior of the geometric phase at or near the resonant state of the system may be of great interest [22, 23]. Figures 2b and 3b show that the geometric phase increases very rapidly when ω is near the resonance angular frequency. This means that the wave function in this situation varies significantly over time, because the magnitude of the geometric phase is related to the time variation of the wave function. As a matter of fact, the amplitude of the wire oscillation is remarkably augmented at the resonance state. By the way, resonance angular frequencies of suspended CNT-based nanowire resonators are not only high but also widely tunable with very high-quality factors [3]. For this reason, the vibrational modes of the system will be kept for a long time until they thoroughly damped out [11].

Figure 4 shows that the geometric phase is also affected by the amplitude of the driving force fd. As fd increases, the increment of the geometric phase in time is rapid.


We have investigated the geometric phase in the squeezed state for the system on the basis of quantum dynamics with the Schrödinger equation. Regarding time-dependence of the Hamiltonian that describes the system, the invariant operator method has been introduced, which is a potential tool for deriving quantum solutions in the case where the Hamiltonian is described in terms of time. By means of this method, the analytical formula of the geometric phase for the CNT-based nanowire oscillation has been obtained.

A detailed analysis of the phase effects, which is necessary for a theoretical understanding of the mechanical vibrations, has been carried out. Our development of the geometric phase is a fully quantum-based one with rigorous mathematical evaluations. The geometric phase is sensitive to the change of mechanical parameters and exhibits an oscillation in a large number of cases. The influence of the squeezing parameters on the evolution of the geometric phase has also been analyzed. We have confirmed a strong increase of geometric phase accumulation over time near the resonant angular frequency.

Our results illustrate the time behavior of the geometric phase that appears in the vibration of a CNT-based nanowire. The analysis of the geometric phase given in this work is important for understanding not only topological features of the system but dynamical vibrations of other nanowire-based mechanical oscillators as well. In particular, we have developed phase properties of the resonant state, of which clarification is necessary in the application of the system in quantum information technologies and other quantum-based industries [40]. The similar method and framework used in this research can also be extended to other nano systems, such as superconducting Fabry-Perot resonators [41], nano cantilevers [42], and qubit-resonator-atom hybrid systems [43].



This research was supported by the Basic Science Research Program of the year 2018 through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.: NRF-2016R1D1A1A09919503).

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.
    Willick K, Tang XS, Baugh J (2017) Probing the non-linear transient response of a carbon nanotube mechanical oscillator. Appl Phys Lett 111(22):223108.CrossRefGoogle Scholar
  2. 2.
    Tadokoro Y, Ohno Y, Tanaka H (2018) Detection of digitally phase-modulated signals utilizing mechanical vibration of CNT cantilever. IEEE Trans Nanotech 17(1):84–92.CrossRefGoogle Scholar
  3. 3.
    Laird EA, Pei F, Tang W, Steele GA, Kouwenhoven LP (2012) A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett 12(1):193–197.CrossRefGoogle Scholar
  4. 4.
    Sansa M, Fernandez-Regulez M, San Paulo A, Perez-Murano F (2012) Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires. Appl Phys Lett 101(24):243115.CrossRefGoogle Scholar
  5. 5.
    Will M, Hamer M, Muller M, Noury A, Weber P, Bachtold A, Gorbachev RV, Stampfer C, Guttinger J (2017) High quality factor graphene-based two-dimensional heterostructure mechanical resonator. Nano Lett 17(10):5950–5955.CrossRefGoogle Scholar
  6. 6.
    Kiesel N, Blaser F, Delic U, Grass D, Kaltenbaek R, Aspelmeyer M (2013) Cavity cooling of an optically levitated submicron particle. Proc Natl Acad Sci USA 110(35):14180–14185.CrossRefGoogle Scholar
  7. 7.
    Moser J, Güttinger J, Eichler A, Esplandiu MJ, Liu DE, Dykman MI, Bachtold A (2013) Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol 8(7):493–496.CrossRefGoogle Scholar
  8. 8.
    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7(5):301–304.CrossRefGoogle Scholar
  9. 9.
    Kuo CY, Chan CL, Gau C, Liu CW, Shiau SH, Ting JH (2007) Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes. IEEE Trans Nanotechnol 6(1):63–69.CrossRefGoogle Scholar
  10. 10.
    de Bonis SL, Urgell C, Yang W, Samanta C, Noury A, Vergara-Cruz J, Dong Q, Jin Y, Bachtold A (2018) Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators. Nano Lett 18(8):5324–5328.CrossRefGoogle Scholar
  11. 11.
    Wang H, Burkard G (2016) Creating arbitrary quantum vibrational states in a carbon nanotube. Phys Rev B 94(20):205413.CrossRefGoogle Scholar
  12. 12.
    Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc Soc R London Ser A 392(1802):45–57.CrossRefGoogle Scholar
  13. 13.
    Jauregui LA, Pettes MT, Rokhinson LP, Shi L, Chen YP (2015) Gate tunable relativistic mass and Berry’s phase in topological insulator nanoribbon field effect devices. Sci Rep 5:8452.CrossRefGoogle Scholar
  14. 14.
    Erlingsson SI, Bardarson JH, Manolescu A (2018) Thermoelectric current in topological insulator nanowires with impurities. Beilstein J Nanotechnol 9:1156–1161.CrossRefGoogle Scholar
  15. 15.
    Zhang C, Liu Y, Yuan X, Wang W, Liang S, Xiu F (2015) Highly tunable Berry pase and abipolar field effect in topological crystalline insulator Pb 1-x Sn xSe. Nano Lett 15(3):2161–2167.CrossRefGoogle Scholar
  16. 16.
    Safdar M, Wang Q, Mirza M, Wang Z, Xu K, He J (2013) Topological surface transport properties of single-crystalline SnTe nanowire. Nano Lett 13(11):5344–5349.CrossRefGoogle Scholar
  17. 17.
    Taraci JL, Hÿtch MJ, Clement T, Peralta P, McCartney MR, Drucker J, Picraux ST (2005) Strain mapping in nanowires. Nanotechnology 16(10):2365–2371.CrossRefGoogle Scholar
  18. 18.
    Conesa-Boj S, et al (2014) Plastic and elastic strain fields in GaAsSi core-shell nanowires. Nano Lett 14(4):1859–1864.CrossRefGoogle Scholar
  19. 19.
    Iorio P, Perroni CA, Cataudella V (2017) Plasmons in topological insulator cylindrical nanowires. Phys Rev B 95(23):235420.CrossRefGoogle Scholar
  20. 20.
    Gitsu DV, Huber TE, Konopko LA, Nikolaeva AA (2009) Berry’s phase manifestation in Aharonov-Bohm oscillations in single Bi nanowires. J Phys Conf Ser 150(2):022013.CrossRefGoogle Scholar
  21. 21.
    Ryabinkin IG, Joubert-Doriol L, Izmaylov AF (2017) Geometric phase effects in nonadiabatic dynamics near conical intersections. Acc Chem Res 50(7):1785–1793.CrossRefGoogle Scholar
  22. 22.
    Rau ARP, Uskov D (2006) Effective Hamiltonians in quantum physics: resonances and geometric phase. Phys Scr 74(2):C31–C36.CrossRefGoogle Scholar
  23. 23.
    Yuen KW, Fung HT, Cheng KM, Chu M-C, Colanero K (2003) The quantum mechanical geometric phase of a particle in a resonant vibrating cavity. J Phys A Math Gen 36(44):11321–11332.CrossRefGoogle Scholar
  24. 24.
    Dennis M, Popescu S, Vaidman L (2010) Quantum phases: 50 years of the Aharonov–Bohm effect and 25 years of the Berry phase. J Phys A Math Theor 43(35):350301.CrossRefGoogle Scholar
  25. 25.
    Song C, et al (2017) Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat Commun 8:1061.CrossRefGoogle Scholar
  26. 26.
    Wadhawan D, Roychowdhury K, Mehta P, Das S (2018) Multielectron geometric phase in intensity interferometry. Phys Rev B 98(15):155113.CrossRefGoogle Scholar
  27. 27.
    Litchinitser NM (2016) Photonic multitasking enabled with geometric phase. Science 352(6290):1177–1178.CrossRefGoogle Scholar
  28. 28.
    Andersson SB (2003) Geometric phases in sensing and control. Doctorial Dissertation, University of Maryland.Google Scholar
  29. 29.
    Grudzien CJ, Bridges TJ, Jones CKRT (2016) Geometric phase in the Hopf bundle and the stability of non-linear waves. Physica D 334:4–18.CrossRefGoogle Scholar
  30. 30.
    Lewis Jr HR (1967) Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians. Phys Rev Lett 18(13):510–512.CrossRefGoogle Scholar
  31. 31.
    Lewis Jr HR, Riesenfeld WB (1969) An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J Math Phys 10(8):1458–1473.CrossRefGoogle Scholar
  32. 32.
    Lai Y-C, Grebogi C (1991) Chaotic scattering in time-dependent Hamiltonian systems. Int J Bifurcat Chaos 1(3):667–679.CrossRefGoogle Scholar
  33. 33.
    Choi JR (2010) Interpreting quantum states of electromagnetic field in time-dependent linear media. Phys Rev A 82(5):055803.CrossRefGoogle Scholar
  34. 34.
    Abdalla MS, Choi JR (2007) Propagator for the time-dependent charged oscillator via linear and quadratic invariants. Ann Phys(N.Y.) 322(12):2795–2810.CrossRefGoogle Scholar
  35. 35.
    Choi JR (2017) Superposition states for quantum nanoelectronic circuits and their nonclassical properties. Int Nano Lett 7(1):69–77.CrossRefGoogle Scholar
  36. 36.
    Choi JR (2004) Unitary transformation of the time-dependent Hamilton system for the linear, the V-shape, and the triangular well potentials into the quadratic Hamiltonian system. J Appl Sci 4(4):636–643.CrossRefGoogle Scholar
  37. 37.
    Dong W, Wu R, Wu J, Li C, Tarn T-J (2015) Optimal control of quantum systems with SU(1,1) dynamical symmetry. Control Theory Tech 13(3):211–220.CrossRefGoogle Scholar
  38. 38.
    de Clercq LE, et al (2015) Estimation of a general time-dependent Hamiltonian for a single qubit. Nat Commun 7:11218.CrossRefGoogle Scholar
  39. 39.
    Choi JR (2004) The dependency on the squeezing parameter for the uncertainty relation in the squeezed states of the time-dependent oscillator. Int J Mod Phys B 18(16):2307–2324.CrossRefGoogle Scholar
  40. 40.
    Hornyak GL, Moore JJ, Tibbals HF, Dutta J (2009) Fundamentals of nanotechnology. CRC Press, Boca Raton.Google Scholar
  41. 41.
    Kuhr S, et al (2007) Ultrahigh finesse Fabry-Pérot superconducting resonator. Appl Phys Lett 90(16):164101.CrossRefGoogle Scholar
  42. 42.
    Li P, You Z, Cui T (2012) Graphene cantilever beams for nano switches. Appl Phys Lett 101(9):093111.CrossRefGoogle Scholar
  43. 43.
    Yu D, Kwek LC, Amico L, Dumke R (2017) Superconducting qubit-resonator-atom hybrid system. Quantum Sci Technol 2(3):035005.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physics, Kyonggi UniversityGyeonggi-doRepublic of Korea

Personalised recommendations