Advertisement

Nanoscale Research Letters

, 13:401 | Cite as

Preparation of Hollow Polyaniline Micro/Nanospheres and Their Removal Capacity of Cr (VI) from Wastewater

  • Honge Wu
  • Qing Wang
  • Guang Tao Fei
  • Shao Hui Xu
  • Xiao Guo
  • Li De Zhang
Open Access
Nano Express
  • 125 Downloads

Abstract

The hollow polyaniline (PANI) micro/nanospheres are obtained through a simple monomer polymerization in alkaline solution with Triton X-100 Micelles as soft templates. The hollow PANI micro/nanospheres demonstrate rapid and effective removal ability for Chromium (VI) (Cr (VI)) in a wide pH range, and the maximum removal capacity can reach 127.88 mg/g at pH 3. After treated with acid, the used hollow PANI micro/nanospheres have about the similar removal capacity of Cr (VI) from wastewater.

Keywords

Reproducible Toxic Cr (VI) Removal Wastewater Hollow polyaniline micro/nanospheres 

Abbreviations

APS

Ammonium persulfate

B

Benzenoid ring

EB

Emeraldine

FESEM

Field-emission scanning electron microscope

FTIR

Fourier-transform infrared spectroscopy

ICP

Inductively coupled plasma emission spectrometer

LB

Leucoemeraldine

PANI

Polyaniline

PB

Pernigraniline

Q

Quinoid ring

TEM

Transmission electron microscope

XPS

X-ray photoelectron spectroscopy

XRD

X-ray diffraction

Background

Heavy metal ion Chromium (VI) (Cr (VI)), originating from chromium plating, leather tanning, metal finishing, and textile industries, is seriously hazardous to ecosystems and living organisms due to its carcinogenicity and mobility [1, 2, 3]. The untreated Cr (VI) ions can cause kidney failure, pulmonary congestion, gastric damage, liver cancer, skin irritation, and so on [4, 5, 6]. In comparison to Cr (VI), Cr (III) ions are easily precipitated or adsorbed [7, 8, 9]. Thus, converting Cr (VI) to Cr (III) and precipitating Cr (III) to solid are the common techniques for Cr (VI) removal from solution. Whereas the traditional reductants such as sulfur dioxide, sodium metabisulfite, and ferrous sulfate, used for Cr (VI) reduction, are non-recyclable and not reusable. Additionally, they also lead to secondary waste products generation, leading to increased environmental problems [10, 11]. Therefore, it is essential to explore new materials for removal of Cr (VI) from aqueous environment.

Since Rajeshwar and co-workers firstly reported that conductive polymers could convert highly toxic Cr (VI) to less toxic Cr (III) in 1993 [12], conductive polymers, especially polyaniline (PANI), have been widely concerned [13, 14, 15, 16], due to their easy synthesis, low cost, and special proton doping/dedoping mechanism. PANI, normally has three oxidation states, which are pernigraniline (PB, which belongs to aromatic tertiary amine), emeraldine (EB, which belongs to aromatic secondary amine), and leucoemeraldine (LB) [17, 18], contains benzenoid and quinonoid units with abundant amine groups which can provide electrons for Cr (VI) reduction [1, 10]. However, PANI bulk and film with poor porosity restricts its application in Cr (VI) reduction. Recently, the hollow PANI micro/nanospheres have received considerable attention due to their wide potential applications in supercapacitor [19, 20], electrochemical biosensors fields [21], and so on. Moreover, the hollow PANI micro/nanospheres with inner cavity can enhance specific surface area thus to enhance removal of Cr (VI) capacity and absorption rate. Recently, hollow PANI microspheres are being prepared using hard template methods [19]; however, they involve complex procedures of preparing and removing, which lead to poor reproducibility and make it rather difficult to retain the hollow structure after template removal [22, 23]. Compared to the hard template methods, the soft template methods are cheaper and more effective. More importantly, the soft template can be removed easily by water and ethanol [1, 24]. Hence, a simple, effective, and high-yield preparation method of PANI micro/nanospheres is still desirable in the field of toxic Cr (VI) removal.

In this paper, a large-quantity of reproducible hollow PANI micro/nanospheres is synthesized by a simple monomer polymerization in alkaline solution with Triton X-100 Micelles as soft templates. The reproducible hollow PANI micro/nanospheres are nontoxic and safe to ecosystems. Meanwhile, the reproducible hollow PANI micro/nanospheres have high removal of Cr (VI) capacity which can reached 127.88 mg/g at pH 3. The removal Cr (VI) kinetics model and absorption isotherm of hollow PANI micro/nanospheres conform to pseudo-second-order kinetics model and Langmuir absorption isotherm model, respectively. The hollow PANI micro/nanospheres not only remove Cr (VI) rapidly but also can be easily regenerated for reuse.

Methods

The Aim of the Study

To solve the problem which the heavy metal ion Cr (VI) in wastewater brings a lethal hazardous to ecosystems and living organisms, the reproducible hollow PANI micro/nanospheres are prepared through a simple monomer polymerization in alkaline solution with Triton X-100 Micelles as soft templates, in order to remove Cr (VI)-bearing waste.

Materials

Aniline (Sinopharm Co. Ltd), sodium hydroxide (NaOH, Sinopharm Co. Ltd), Triton X-100 (Alfa), and ammonium persulfate (APS, Sinopharm Co. Ltd) are analytical grade and used without further purification.

Synthesis of Hollow PANI Micro/Nanospheres

Hollow PANI micro/nanospheres were prepared by a simple polymerization of monomer in alkaline solution with Triton X-100 Micelles as templates. In a typical synthesis process, 32 mmol aniline, 32 mmol NaOH, and 0.82 mmol Triton X-100 were directly dispersed in 20 mL deionized water with a magnetic stirring at room temperature for 20 min, then the mixture solution was cooled in the ice-water bath for 5 min. After that, the oxidant aqueous solution (20 mL) containing 32 mmol APS precooled in the ice-water bath for 5 min was added to the above-mentioned aniline mixture solution in one portion, and the resulting solution was stirred for another 0.5 min to ensure complete mixing and then the reaction was proceed in the ice-water bath without agitation for 12 h. Finally, the products were washed and centrifuged with deionized water and ethanol until the filtrate became colorless and then dried in an oven for 24 h at 60 °C.

Characterization

The morphology of the resulting PANI products was observed with field-emission scanning electron microscope (FESEM, Sirion 200) and transmission electron microscope (TEM, JEOL-2010). The structures of the as-prepared PANI were characterized by X-ray diffraction (XRD, Philips X’Pert) and Fourier-transform infrared spectroscopy (FTIR, JASCO FT-IR 410 spectrophotometer). The Cr concentration was analyzed by inductively coupled plasma emission spectrometer (ICP) and UV-Vis absorption spectroscopy. The oxidation state of chromium adsorbed on PANI nanostructure was ascertained using X-ray photoelectron spectroscopy (XPS, ESCALAB 250). The zeta potential and particle size were obtained by Zetasizer 3000HSa.

Removal of Cr (VI) by Hollow PANI Spheres

The Cr (VI) solution was prepared by dissolving potassium dichromate (K2Cr2O7) into deionized water. The stock solution (2 mmol L−1) was prepared by dissolving 1.177 g of K2Cr2O7 in 2000 mL of deionized water. All working solutions with various concentrations were obtained by successive dilution. The as-synthesized PANI powder (10 mg) was ultrasonically dispersed into 20 mL of Cr (VI) solution (1.2 mmol L−1) with different pH values, which was adjusted with NaOH and HCl solution. After reaction for 3 h, the reaction solution was centrifuged and the pH values of supernatant liquid were adjusted into the range of 7.5–8.5. Finally, the used hollow PANI micro/nanospheres was separated and rinsed several times with deionized water and dried. The Cr (VI) removal capacities of the hollow PANI micro/nanospheres in different pH value can be calculated using the following equation:
$$ {q}_e=\frac{\left({c}_0-{c}_e\right)V}{m} $$
(1)
where qe is the amount of Cr (VI) removal per gram of hollow PANI micro/nanospheres at equilibrium (mg/g), V is the volume of the solution (L), m is the mass of the hollow PANI micro/nanospheres (g), and c0 and ce are the concentration of the Cr (VI) at initial and equilibrium (mg/L), respectively.

Removal Kinetics Measurement

For the experiments of removal kinetics, three sets of experiments were carried out, in which the pH values of Cr (VI) solution were 3, 4, and 5, respectively. The as-synthesized PANI powder (10 mg) was ultrasonically dispersed into 20 mL of Cr (VI) solution (1.2 mmol L−1) with different pH values, and the mixture was stirred magnetically. At predetermined intervals, an appropriate amount of the reaction solution was taken out and then centrifuged. The supernatant liquid was used for analyzing the Cr (VI) concentration by UV-Vis absorption spectroscopy at 350 nm wavelength. The theoretical kinetic plots were obtained using the pseudo-second-order equation:
$$ \frac{t}{q_t}=\frac{1}{k_2{q}_e^2}+\frac{t}{q_e} $$
(2)
where qe and qt are the amounts of Cr (VI) removed by hollow PANI micro/nanospheres at equilibrium and at time t (min) (mg/g), and k2 is the rate constant (g/mg min).

Removal Isotherm Measurement

For the removal isotherm experiments, the operation processes are the same as above. We also did three sets of experiments in different pH values, 3, 4, and 5, respectively. In each experiment, the as-synthesized PANI powder (10 mg) was ultrasonically dispersed into 20 mL of Cr (VI) solution with different concentration under magnetic stirring. When the solution reached to the equilibrium of removal, they were centrifuged and then analyzed for the remaining Cr (VI) concentration by UV-Vis absorption spectroscopy. The Langmuir plots for the removal of Cr (VI) by hollow PANI micro/nanospheres using the Langmuir equation:
$$ \frac{c_e}{q_e}=\frac{1}{q_m{k}_L}+\frac{c_e}{q_m} $$
(3)
where qm is the maximum removal capacity (mg/g), qe is the amounts of Cr (VI) at equilibrium (mg/g), ce is the concentration of the Cr (VI) at equilibrium (mg/L), and kL is the Langmuir constant.

Results and Discussion

The as-synthesized PANI was obtained by monomer polymerization with Triton X-100 Micelles as soft templates. The morphology via SEM and TEM observation is shown as Fig. 1. Abundant PANI micro/nanospheres can be observed clearly from SEM image of PANI in Fig. 1a. Carefully, a hole on the micro/nanospheres surface is observed, as shown in the inset image of Fig. 1a, which indicates the micro/nanospheres are hollow. This result is further confirmed via TEM image (Fig. 1b). In addition, two images show that the diameter of these micro/nanospheres is between 0.5 and 2 μm.
Fig. 1

a SEM and b TEM images of the as-synthesized hollow PANI micro/nanospheres

The molecular structure of as-synthesized hollow PANI micro/nanospheres is characterized by FTIR spectroscopy and X-ray diffraction (XRD), shown in Fig. 2. Five characteristic peaks can be observed clearly in Fig. 2a. The characteristic peaks at 1569 cm−1 and 1496 cm−1 are attributed to the C-N stretching vibration of quinoid ring (Q) and benzenoid ring (B), respectively. The peak appeared at 1298 cm−1 is due to the C-H stretching vibration with aromatic conjugation [1]. Peak at 1142 cm−1 corresponds to the N-Q-N stretching modes and is a symbol of electron delocalization in PANI [1]. Besides, the absorption peak at 824 cm−1 is characteristic of the C-H out-of-plane bending vibrations of the para-substituted benzene ring [25]. Comparing the characteristic peaks of the benzenoid ring and the quinoid ring, the relative absorbance intensity of benzenoid ring is greater than that of quinoid ring. Then, it can be deduced that the hollow PANI micro/nanospheres are mainly in emeraldine form. Figure 2b displays the XRD pattern of as-synthesized hollow PANI micro/nanospheres, which shows unusual high crystallinity with diffraction peaks centered at 20.2° and 25.4°, corresponding to the periodicity parallel and perpendicular to the polymer chains [25].
Fig. 2

a FTIR spectrum and b XRD patterns of the as-synthesized hollow PANI micro/nanospheres

Figure 3 shows the results of Cr (VI) removal at different times, in which the pH values of Cr (VI) solution are 3, 4, and 5, respectively. Seen from the Fig. 3a, the color of Cr (VI) solution is getting lighter under treatment with hollow PANI micro/nanospheres as increasing time. Especially, the relatively clear liquid is obtained after 90 min when the pH is 3. And the results which the concentration of Cr (VI) was treated by hollow PANI micro/nanospheres are directly shown in Fig. 3b. These results indicate that the hollow PANI micro/nanospheres are an efficient candidate for Cr (VI) removal from solution in appropriate condition.
Fig. 3

The Cr (VI) solution after treated with hollow PANI micro/nanospheres in different times, solution pH respectively at a 3, b 4, and c 5 (initial Cr (VI) concentration: 1.2 mmol/L (62.4 mg/L)). a The photographs and b Cr (VI) concentration in the final solution

The pH value of the solution is an important parameter which affects the chemistry properties of Cr (VI) in solution or the protonation or deprotonation of the PANI. Therefore, the Cr (VI) removal and reduction capacities of as-synthesized PANI are studied in solution of different pH, as shown in Fig. 4. Figure 4a shows the changes of the total Cr and Cr (VI) concentrations after treatment with hollow PANI micro/nanospheres at different pH values, respectively. The Cr (VI) removal capacities of the hollow PANI micro/nanospheres in different pH value can be calculated using the Eq. (1). The corresponding relationship between Cr (VI) removal capacities and pH values is calculated from the values in Fig. 4a by Eq. (1) and shown in Fig. 4b. The obvious decrease of Cr (VI) concentration as the decrease of pH values from 12 to 1 displays that the corresponding Cr (VI) removal capacities of the hollow PANI micro/nanospheres increase with increase of acidity. Especially, the Cr (VI) removal capacity shows a rapid increase when pH is lower than 4. However, the total Cr concentration shows abnormal performance when pH value is below 2, which indicates that the concentration of the Cr (III) sharply increases in the solution. It was reported that, at lower pH (pH below 2), the reduced Cr (III) dominantly existed in Cr3+ form, and the literature reported that the protonation extent of the used PANI hollow micro/nanospheres rapidly increased with pH decrease in acidic pH 1–2 [26, 27]. Therefore, the above experiment results can be attributed to that the electrostatic repulsion increases between the used hollow PANI microspheres and the reduced Cr (III), which overcomes chelation interaction between them, so as to Cr (III) enter into solution from the surface of PANI, when pH is below 2. When pH is higher than 2, the change tendency of the total Cr concentration is similar to that of Cr (VI) (Fig. 4a), indicating that most of the reduced Cr (III) is removed from the solution. It affirms that the hollow PANI micro/nanospheres are a good candidate for Cr (VI) removal when the pH value between 2 to 4.
Fig. 4

a The changes of the Cr concentration under different solution pH, and b the corresponding Cr (VI) removal capacities (initial Cr (VI) concentration: 1.2 mmol/L (62.4 mg/L))

The hollow PANI microspheres after reaction with Cr (VI) solution at pH 3, 4 and 5 are further investigated. Figure 5a–c shows the element mapping analysis of the used hollow PANI micro/nanospheres, in which Cr element was observed besides C and N elements. It directly demonstrates that the Cr ions were adsorbed indeed by PANI hollow micro/nanospheres. Figure 5d shows the XPS spectrums of the used PANI hollow microspheres at pH 3, 4, and 5, respectively, which exhibits the binding energy of the Cr 2p. In the XPS spectra, two peaks can be observed; the former corresponds to 2p1/2, the later to 2p3/2. Comparing the three XPS spectrum lines, the binding energy of the Cr 2p3/2 locates at 577.4 eV and nothing to do with pH value. It was reported that the bands at 577.4 eV can be attributed to Cr (III) by analogy with other chromium compounds [12, 28]. Thus, the adsorbed Cr are all mainly in Cr (III) form.
Fig. 5

ac Element mapping and d Cr 2p XPS spectra of the hollow PANI micro/nanospheres after reaction with Cr (VI) (initial Cr (VI) concentration: 1.2 mmol/L (62.4 mg/L); solution pH respectively at 3, 4, and 5)

Based on all of these results, it can summarize the removal mechanism of Cr (VI) with hollow PANI micro/nanospheres as follows: the Cr (VI) is absorbed on the surface of hollow pristine PANI micro/nanospheres (EB). Then the absorbed Cr (VI) is all reduced to Cr (III). Meanwhile, pristine PANI (EB) is oxidized to pernigraniline form (PB). Cr (VI) in solution exists in the form of acid chromate ion (HCrO4) within the pH range (2–6) [25]. At this pH range, a portion of EB PANI is protonated, and the amine group (-NH-) of its molecules exists as amine group (-NH2+-). Thus, Cr (VI) adsorbed by hollow PANI micro/nanospheres accomplishes through the electrostatic interaction between positive charge PANI and negative charge HCrO4. The zeta potential and particle size of the samples were measured with Zetasizer 3000HSa, and the results show that the zeta potential is 38.6 mV and 32.9 mV, and the particle size is about 990 nm and 630 nm for PANI before and after Cr (VI) removal at pH 3, respectively. It means that PANI of before and after Cr (VI) removal can exist stably in the solution. Comparing the molecular structure of EB and PB PANI, it can be found that the solvation of EB PANI of aromatic secondary amine is greater than that of PB PANI of aromatic tertiary amine, because the secondary amine carries one more hydrogen atom than the tertiary amine [29]. Thus, the apparent particle size of EB PANI is greater than that of PB PANI.

As we known, the removal capacity of Cr (VI) mainly depends on the specific surface area of hollow PANI micro/nanospheres. The specific surface area of hollow PANI micro/nanospheres can be obtained by nitrogen adsorption-desorption analysis (shown in Fig. 6), and the BET surface area can be calculated to be 32.813 m2/g, indicating higher specific surface area of hollow PANI micro/nanospheres.
Fig. 6

Nitrogen adsorption-desorption isotherms of the as-synthesized hollow PANI micro/nanospheres

Figure 7a shows the relationship between the removal capacity qt of Cr (VI) and the time t for solution with different pH values. The removal capacity increases rapidly in the initial stage (0~5 min), and then continues to increase slowly until equilibrium after about 120 min. It indicates that the initial removal occurs on the surface of hollow PANI micro/nanospheres and then proceeds into the inner part [25].
Fig. 7

a Changes of Cr (VI) concentration at different times (initial Cr (VI) concentration: 1.2 mmol/L (62.4 mg/L), solution pH respectively at 3, 4, and 5), and b the pseudo-second-order models on removal kinetic of Cr (VI) with hollow PANI micro/nanospheres

In order to explore the removal Kinetics of Cr (VI) with hollow PANI micro/nanospheres, some models containing the pseudo-first-order and pseudo-second-order models are employed to interpret the experiment data. Here, the pseudo-second-order is the most appropriate model to fit the experimental data, comparing the experiment data with these theoretical models. Figure 7b shows the theoretical Kinetic plots according to the pseudo-second-order Eq. (2). The result shows that t/qt versus t were linear and the correlation coefficients R2 correspond to 0.99788, 0.99817, and 0.99994, for pH 3, 4 and 5, respectively. In addition, the values of qe can be calculated from the slope, i.e., 80.654, 37.48, and 21.56 mg/g corresponding to pH value of 3, 4, and 5, respectively, which are close to the experimental values shown in Fig. 7a.

The Cr (VI) removal capacities of the PANI hollow micro/nanospheres are also related to Cr (VI) concentration. So it is important to investigate the effect of Cr (VI) concentration on the removal capacities of PANI hollow micro/nanospheres. The experiment was carried out at pH 3, 4, and 5, respectively, with various initial concentrations of Cr (VI). Figure 8a shows the changes of the Cr (VI) removal capacity (qe (mg/g)) versus equilibrium concentration (ce (mg/L)). As shown in Fig. 8a, the removal capacity increases faster at lower Cr (VI) concentration and tend to be a constant value at higher concentration, that is, maximum Cr (VI) removal capacity of hollow PANI micro/nanospheres is achieved. To describe the experimental result of Cr (VI) removal isotherm, three important isotherms models, which are Langmuir, Freundlich, and Temkin models, are selected. However, only the Langmuir model can fit the experimental data. Figure 8b shows the Langmuir plots for the removal of Cr (VI) by hollow PANI micro/nanospheres the Langmuir Eq. (3). The result shows that ce/qe versus ce is linear at pH 3, 4, and 5, respectively (correlation coefficient R2 = 0.99950, 0.99875, and 0.99962 at pH 3, 4, and 5). In addition, the values of qm which is calculated from the slope are 25.61, 43.20, and 127.88 mg/g at pH 5, 4, and 3, respectively, which are close to the experimental values shown in Fig. 8a. The Langmuir isotherm is based on assumption of no interaction between homogeneous structure adsorbent and monolayer coverage. The removal of Cr (VI) from the solution on the hollow PANI micro/nanosphere matches with the monolayer mode. It can affirm that no further adsorption can take place when active sites on the surface of the hollow PANI micro/nanospheres are occupied by Cr (VI).
Fig. 8

a The removal capacity of Cr (VI) at different equilibrium concentration (solution pH respectively at 3, 4, and 5), and b corresponding Langmuir removal isotherm model

The comparison of the maximum Cr(VI) removal capacity of the hollow PANI micro/nanospheres synthesized in this study with that reported in the literatures is shown in Table 1. It can be seen that the polyaniline hollow micro/nanospheres exhibits higher Cr(VI) removal capacity than that of many other removers. These results suggest that the hollow PANI micro/nanospheres can be considered as a promising material for the removal of Cr(VI) from aqueous solution.
Table 1

Comparison of the maximum removal capacity of Cr (VI) on various removers

Removers

pH

qm (mg g−1)

References

Hollow PANI spheres

3.0

127.88

This work

Hollow PANI spheres

4.0

43.20

This work

Hollow PANI spheres

5.0

25.61

This work

Poly(o-toluidine)/pumice

3.0

19.4

[30]

Hazelnut shell activated carbon (H2SO4)

3.0

52.2

[31]

PANI-jute

3.0

62.9

[32]

Waste Weed, Salvinia cucullata

4.9

23.98

[33]

Water lily

5.0

5.11

[34]

PANI nanowire/tubes

5.0

86.7

26

Wood activated carbon

2.0–5.0

29.9–26.6

[35]

On the basis of the aforementioned results, the process of Cr (VI) removal can be explained as following. The initial solution contains Cl, H+, HCrO4 ions, and so on (Fig. 9a). Under the acid medium condition, emeraldine oxidation state of PANI (EB) and Cr (VI) ions are oxidized and reduced to pernigraniline state (PB) and Cr3+ ions, respectively (Fig. 9b). The main reaction proceeding can be demonstrated as follows under acid solution [36]:
$$ 3\mathrm{PANI}\ \left(\mathrm{EB}\right)+6{\mathrm{Cl}}^{\hbox{-} 1}\hbox{-} 6{\mathrm{e}}^{\hbox{-} 1}\to 3\mathrm{PANI}{\left(\mathrm{Cl}\right)}_2\left(\mathrm{PB}\right) $$
(4)
$$ 2{{\mathrm{H}\mathrm{CrO}}_4}^{\hbox{-} 1}\kern0.5em +14{\mathrm{H}}^{+}\kern0.5em +6{\mathrm{e}}^{\hbox{-} 1}\kern0.5em \to 2{\mathrm{Cr}}^{3+}\kern0.5em +\kern0.5em 8{\mathrm{H}}_2\mathrm{O} $$
(5)
Fig. 9

The schematic diagram of Cr (VI) removal. a Wastewater containing Cr (VI) under acidic conditions, b adding PANI to wastewater containing Cr (VI), and c wastewater of Cr (VI) removal

This reaction occurs simultaneously on the surface of PANI. The resulting Cr3+ ions are absorbed on the surface of PANI micro/nanospheres (Fig. 9c). As mentioned above, PANI micro/nanospheres are hollow spheres, and most hollow spheres have many holes, so the outer and inner surface of PANI micro/nanospheres can absorb lots of Cr3+ ions because of the hollow structure (Fig. 1).

It was reported that the pernigraniline is unstable under ambient conditions and easily reduced to emeraldine oxidation state in strong acid solution, such as HCl and H2SO4 [26]. This indicates that the used hollow PANI micro/nanospheres can be easily regenerated through acid treatment. The conversion between the pernigraniline and the emeraldine state can be shown as Scheme 1. For example, the used hollow PANI micro/nanoshpheres are further treated with 1 M HCl for 0.5 h and then reused for Cr (VI) removal. It can be found from Table 2 that the removal capacity of the first reused hollow PANI micro/nanoshpheres is probably close to the initial PANI removal capacity [26, 37]. It can be concluded that the hollow PANI micro/nanospheres are a reproducible material for Cr (VI) removal.
Scheme 1

Schematic illustration the conversion between pernigraniline and emeraldine of PANI

Table 2

Comparison of Cr (VI) removal capacity at equilibrium treated by hollow PANI micro/nanospheres before and after regeneration

 

qe (the initial PANI) (mg g−1)

qe (the 1st regeneration) (mg g−1)

qe (the 2nd regeneration) (mg g−1)

pH = 3

78.88

78.84

59.87

pH = 4

37.73

37.73

31.66

pH = 5

21.43

21.43

12.84

Conclusions

A large quantity of hollow PANI micro/nanospheres has been fabricated by a simple polymerization of monomer in alkaline solution with Triton X-100 Micelles as templates. The hollow micro/nanospheres can rapidly and effectively remove Cr (VI) in a wide pH range. The removal kinetics data is fitted to pseudo-second-order model well and the Cr (VI) removal isotherm can be described by Langmuir isotherm model. The maximum removal capacity of hollow PANI micro/nanospheres can reach 127.88 mg/g at pH 3. Moreover, the used hollow PANI micro/nanospheres can be easily regenerated by means of treatment with acid solution, maintaining roughly the same Cr (VI) removal capacity. The present work indicates that the hollow PANI micro/nanospheres are an effective and reproducible material for removal toxic Cr (VI) from wastewater.

Notes

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11204307, 51471162), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Foundation of Director of Institute of Solid State Physics, Chinese Academy of Sciences (Grant No. 2016DFY06).

Availability of Data and Materials

The datasets supporting the conclusions of this article are available in the article.

Authors’ Contributions

GTF, HEW, and QW designed the experiments. HEW, QW, GTF, and XG analyzed data. GTF, HEW, QW, SHX, XG, and LDZ discussed the results and contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.
    Hu Q, Guo C, Sun D, Ma Y, Qiu B, Guo Z (2017) Extracellular polymeric substances induced porous polyaniline for enhanced Cr (VI) removal from wastewater. ACS Sustain Chem Eng 5:11788–11796CrossRefGoogle Scholar
  2. 2.
    Zhang LW, Hua JR, Zhu WJ, Liu L, Du XL, Meng RJ, Yao JM (2018) Flocculation performance of hyperbranched polyethylenimine-grafted cellulose in wastewater treatment. ACS Sustain Chem Eng 6:1592–1601CrossRefGoogle Scholar
  3. 3.
    Vellaichamy B, Periakaruppan P, Nagulan B (2017) Reduction of Cr6+ from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis. ACS Sustain Chem Eng 5:9313–9324CrossRefGoogle Scholar
  4. 4.
    Huang X, Hou X, Song F, Zhao J, Zhang L (2016) Facet-dependent Cr (VI) adsorption of hematite nanocrystals. Environ Sci Technol 50:1964–1972CrossRefGoogle Scholar
  5. 5.
    Wang D, Zhang G, Zhou L, Wang M, Cai D, Wu Z (2017) Synthesis of a multifunctional graphene oxide-based magnetic nanocomposite for efficient removal of Cr (VI). Langmuir 33:7007–7014CrossRefGoogle Scholar
  6. 6.
    Chen JH, Xing HT, Guo HX, Weng W, Hu SR, Li SX, Huang YH, Sun X, Su ZB (2014) Investigation on the adsorption properties of Cr (VI) ions on a novel graphene oxide (GO) based composite adsorbent. J Mater Chem A 2:12561–12570CrossRefGoogle Scholar
  7. 7.
    Han JC, Chen GJ, Qin LP, Mu Y (2017) Metal respiratory pathway-independent Cr isotope fractionation during Cr (VI) reduction by shewanella oneidensis MR-1. Environ Sci Technol Lett 4:500–504CrossRefGoogle Scholar
  8. 8.
    Jiang B, Liu Y, Zheng J, Tan M, Wang Z, Wu M (2015) Synergetic transformations of multiple pollutants driven by Cr (VI)-sulfite reactions. Environ Sci Technol 49:12363–12371CrossRefGoogle Scholar
  9. 9.
    Zhu K, Chen C, Xu H, Gao Y, Tan X, Alsaedi A, Hayat T (2017) Cr (VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@zeolitic idazolate frameworks-8 microspheres. ACS Sustain Chem Eng 5:6795–6802CrossRefGoogle Scholar
  10. 10.
    Zhou T, Li C, Jin H, Lian Y, Han W (2017) Effective adsorption/reduction of Cr (VI) oxyanion by halloysite@polyaniline hybrid nanotubes. ACS Appl Mater Interfaces 9:6030–6043CrossRefGoogle Scholar
  11. 11.
    McClain CN, Fendorf S, Webb SM, Maher K (2017) Quantifying Cr (VI) production and export from serpentine soil of the California coast range. Environ Sci Technol 51:141–149CrossRefGoogle Scholar
  12. 12.
    Park D, Yun YS, Park JM (2004) Reduction of hexavalent chromium with the brown seaweed ecklonia biomass. Environ Sci Technol 38:4860–4864CrossRefGoogle Scholar
  13. 13.
    Qiu B, Xu C, Sun D, Yi H, Guo J, Zhang X, Qu H, Guerrero M, Wang X, Noel N, Luo Z, Guo Z, Wei S (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2:2070–2080CrossRefGoogle Scholar
  14. 14.
    Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2012) Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J 181-182:323–333CrossRefGoogle Scholar
  15. 15.
    Rodriguez FJ, Gutierrez S, Ibanez JG, Bravo JL, Batina N (2000) The efficiency of toxic chromate reduction by a conducting polymer (polypyrrole): influence of electropolymerization condition. Environ Sci Technol 34:2018–2023CrossRefGoogle Scholar
  16. 16.
    Guo X, Fei GT, Su H, Zhang LD (2011) Synthesis of polyaniline micro/nanospheres by a copper(ii)-catalyzed self-assembly method with superior adsorption capacity of organic dye from aqueous solution. J Mater Chem 21:8618–8625CrossRefGoogle Scholar
  17. 17.
    Kolla HS, Surwade SP, Zhang XY, Macdiarmid AG, Manohar SK (2005) Absolute molecular weight of polyaniline. J Am Chem Soc 127:16770–16771CrossRefGoogle Scholar
  18. 18.
    Lv LP, Zhao Y, Vilbrandt N, Gallei M, Vimalanandan A, Rohwerder M, Landfester K, Crespy D (2013) Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. J Am Chem Soc 135:14198–14205CrossRefGoogle Scholar
  19. 19.
    Liu L, Wang Y, Meng Q, Cao B (2017) A novel hierarchical graphene/polyaniline hollow microsphere as electrode material for supercapacitor applications. J Mater Sci 52:7969–7983CrossRefGoogle Scholar
  20. 20.
    He L, Cui B, Liu J, Song Y, Wang M, Peng D, Zhang Z (2018) Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensor Actuat B-Chem 258:813–821CrossRefGoogle Scholar
  21. 21.
    Kwon H, Hong D, Ryu I, Yim S (2017) Supercapacitive properties of 3D-arrayed polyaniline hollow nanospheres encaging RuO2 nanoparticles. ACS Appl Mater Interfaces 9:7412–7423CrossRefGoogle Scholar
  22. 22.
    Zhang ZM, Sui J, Zhang LJ, Wan MX, Wei Y, Yu LM (2005) Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template. Adv Mater 17:2854–2857CrossRefGoogle Scholar
  23. 23.
    Tian YX, Li HZ, Liu Y, Cui GJ, Sun ZB, Yan SQ (2016) Morphology-dependent enhancement of template-guided tunable polyaniline nanostructures for the removal of Cr (VI). RSC Adv 6:10478CrossRefGoogle Scholar
  24. 24.
    Wei ZX, Wan MX (2002) Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Adv Mater 14:1314–1317CrossRefGoogle Scholar
  25. 25.
    Ai L, Jiang J, Zhang R (2010) Uniform polyaniline microspheres: a novel adsorbent for dye removal from aqueous solution. Synthetic Met 160:762–767CrossRefGoogle Scholar
  26. 26.
    Guo X, Fei GT, Su H, Zhang LD (2011) High-performance and reproducible polyaniline nanowire/tubes for removal of Cr (VI) in aqueous solution. J Phys Chem C 115:1608–1613CrossRefGoogle Scholar
  27. 27.
    Kumar PA, Ray M, Chakraborty S (2009) Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate. Chem Eng J 149:340–347CrossRefGoogle Scholar
  28. 28.
    Kumar PA, Ray M, Chakraborty S (2007) Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater 143:24–32CrossRefGoogle Scholar
  29. 29.
    Trotman-Dickenson AF (1949) The basic strength of amines. J Chem Soc 280:1293-1297Google Scholar
  30. 30.
    Gök AU, Göde F (2008) Composites of poly(2-chloroaniline) and poly(o-toluidine) with pumice and their application in the removal of chromium(VI) ions from aqueous solutions. J Appl Polym Sci 107:2295–2303CrossRefGoogle Scholar
  31. 31.
    Selvi K, Pattabhi S, Kadirvelu K (2001) Removal of Cr(VI) from aqueous solution by adsorption onto actived carbon. Bioresour Technol 80:87–89CrossRefGoogle Scholar
  32. 32.
    Kumar PA, Chakraborty S, Ray M (2008) Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chem Eng J 141:130–140CrossRefGoogle Scholar
  33. 33.
    Baral SS, Das SN, Rath P, Chaudhury GR (2007) Removal of Cr(VI) from aqueous solution using waste weed, salvinia cucullata. Chem Ecol 23:105–117CrossRefGoogle Scholar
  34. 34.
    Elangovan R, Philip L, Chandraraj K (2008) Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J Hazard Mater 152:100–112CrossRefGoogle Scholar
  35. 35.
    Haghseresht F, Lu GQ (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energ Fuel 12:1100–1107CrossRefGoogle Scholar
  36. 36.
    Olad A, Nabavi R (2007) Application of polyaniline for the reduction of toxic Cr (VI) in water. J Hazard Mater 147:845–851CrossRefGoogle Scholar
  37. 37.
    Ding J, Pu LT, Wang YF, Wu BD, Yu AQ, Zhang XL, Pan BC, Zhang QX, Gao GD (2018) Adsorption and reduction of Cr (VI) together with Cr (III) sequestration by polyaniline confined in pores of polystyrene beads. Environ Sci Technol 52:12602–12611CrossRefGoogle Scholar

Copyright information

© The Author(s). 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.University of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.College of Biological and Chemical Engineering, Anhui Polytechnic UniversityWuhuPeople’s Republic of China

Personalised recommendations