Earth, Planets and Space

, Volume 58, Issue 4, pp 351–358 | Cite as

Swarm: A constellation to study the Earth’s magnetic field

Open Access


The Swarm mission was selected as the 5th mission in ESA’s Earth Explorer Programme in 2004. The mission will provide the best ever survey of the geomagnetic field and its temporal evolution that will lead to new insights into the Earth system by improving our understanding of the Earth’s interior and its effect on Geospace, the vast region around the Earth where electrodynamic processes are influenced by the Earth’s magnetic field. Scheduled for launch in 2010, the mission will comprise a constellation of three satellites, with two spacecraft flying sideby- side at lower altitude (450 km initial altitude), thereby measuring the East-West gradient of the magnetic field, and the third one flying at higher altitude (530 km). High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the necessary observations that are required to separate and model the various sources of the geomagnetic field. This results in a unique “view” inside the Earth from space to study the composition and processes of its interior. It also allows analysing the Sun’s influence within the Earth system. In addition practical applications in many different areas, such as space weather, radiation hazards, navigation and resource management, will benefit from the Swarm concept.

Key words

Geomagnetism magnetic field mission Swarm satellites 


  1. Alexandrescu, M., D. Gibert, G. Hulot, J. L. Le Mouël, and G. Saracco, Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 101, 21975–21994, 1996.CrossRefGoogle Scholar
  2. Amit, H. and P. Olson, Helical core flow from geomagnetic secular variation, Phys. Earth Planet Inter., 147, 1–25, 2004.CrossRefGoogle Scholar
  3. Bijwaard, H. and W. Spakman, Non-linear global P-wave tomography by iterated linearized inversion, Geophys. J. Int., 110, 251–266, 2000.Google Scholar
  4. Bloxham, J. and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19537–19568, 1992.CrossRefGoogle Scholar
  5. Bloxham, J., S. Zatman, and M. Dumberry, The origin of geomagnetic jerks, Nature, 420, 65–68, 2002.CrossRefGoogle Scholar
  6. Constable, S. and C. Constable, Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity, Geochem. Geophys. Geosys., 5(1), Q01006 doi:10.1029/ 2003GC000634, 2004.Google Scholar
  7. Dormy, E. and M. Mandea, Tracking geomagnetic impulses at the core-mantle boundary, Earth Planet. Sci. Lett., 237, 300–309, 2005.CrossRefGoogle Scholar
  8. Editors of Science, Areas to watch in 2003, “A sun-climate connection”, Science, 298, 2298, 2002.CrossRefGoogle Scholar
  9. ESA SP-1279-6, The Earth’s Magnetic Field and Environment Explorers, ESA Publication Division, ESTEC., Noordwijk, 2004. Technical and Programmatic Annex to ESA SP-1279-6, The Earth’s Magnetic Field and Environment Explorers, ESA Publication Division, ESTEC., Noordwijk, 2004.Google Scholar
  10. Eymin, C. and G. Hulot, On core surface flows inferred from satellite magnetic data, Phys. Earth Planet. Int, 152, 200–220, 2005.CrossRefGoogle Scholar
  11. Finlay, C. and A. Jackson, Equatorially dominated magnetic field change at the surface of earth’s core, Science, 300, 2084–2086, 2003.CrossRefGoogle Scholar
  12. Fox Maule, C., M. Purucker, N. Olsen, and K. Mosegaard, Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data, Science, 309, 464–467, doi:10.1126/science.1106888, 2005.CrossRefGoogle Scholar
  13. Friis-Christensen E., H. Lühr, and G. Hulot: Swarm—a constellation to study the dynamics of the Earth’s magnetic field and its interaction with the Earth system, Proposal for ESA Earth Explorer Opportunity Missions, January 2002, ISSN 1602-527X, DSRI Report 1/2002, 2002.Google Scholar
  14. Holme, R., Electromagnetic core-mantle coupling III. Laterally varying mantle conductance, Phys. Earth Planet Inter, 117, 329–344, 2000.CrossRefGoogle Scholar
  15. Holme, R. and O. de Viron, Geomagnetic jerks and a high-resolution length-of-day profile for core studies, Geophys. J. Int., 160, 435–439, 2005.CrossRefGoogle Scholar
  16. Hulot, G. and A. Chulliat, On the possibility of quantifying diffusion and horizontal Lorentz forces at the Earth’s core surface, Phys. Earth Planet Inter., 135, 47–54, 2003.CrossRefGoogle Scholar
  17. Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Small-scale structure of the Geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, 2002.CrossRefGoogle Scholar
  18. Jackson, A., Time-dependency of tangentially geostrophic core surface motions, Phys. Earth Planet Inter., 103, 293-311, 1997.CrossRefGoogle Scholar
  19. Jackson, A., A. Jonkers, and M. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond., 358, 957–990, 2000.CrossRefGoogle Scholar
  20. Jault, D., Electromagnetic and topographic coupling, and LOD variations, in edited by C. A. Jones and K. Zhang (Eds), “Earth’s core and lower mantle”, The Fluid Mechanics of Astrophysics and Geophysics, Taylor and Francis, London, pp. 56–76, 2003.Google Scholar
  21. Kuvshinov, A., T. J. Sabaka, and N. Olsen, 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle, Earth Planets Space, 58, this issue, 417–427, 2006.CrossRefGoogle Scholar
  22. Langel, R., G. Ousley, and J. Berbert, The Magsat Mission, Geophys. Res. Lett., 9, 243–245, 1982.CrossRefGoogle Scholar
  23. Le Huy, M., M. Mandea, J. L. Le Mouël, and A. Pais, Time evolution of the fluid at the top of the core. Geomagnetic jerks, Earth Planets Space, 52, 163–173, 2000.CrossRefGoogle Scholar
  24. Lesur, V., S. Macmillan, and A. Thomson, Deriving main field and secular variation models from synthetic Swarm satellite and observatory data, Earth Planets Space, 58, this issue, 409–416, 2006.CrossRefGoogle Scholar
  25. Liu, H. and H. Lühr, Strong disturbance of the upper thermosphere density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A04301; doi:10.1029/2004JA010741, 2005.Google Scholar
  26. Liu, H., H. Lühr, V. Henize, and W. Köhler, Global distribution of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 110, A04301; doi:10.1029/2004JA010741, 2005.Google Scholar
  27. Lühr, H., M. Rother, S. Maus, W. Mai, and D. Cooke, The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modelling, Geophys. Res. Lett., 30, 17, 1906, doi:10.1029/2003GL017407, 2003.CrossRefGoogle Scholar
  28. Lühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt, Thermospheric up-welling in the cusp region, evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi:10.1029/2003GL019314, 2004.CrossRefGoogle Scholar
  29. Mandea Alexandrescu, M., D. Gibert, J.-L. Le Mouël, G. Hulot, and G. Saracco, An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks, J. Geophys. Res, 104, 17735–17745, 1999.CrossRefGoogle Scholar
  30. Mandea, M., E. Bellanger, and J. L. Le Mouël, A geomagnetic jerk for the end of the 20th century?, Earth planet. Sci. Lett., 183, 369–373, 2000.CrossRefGoogle Scholar
  31. Manoj, C., A. Kuvshinov, S. Maus, and H. Lühr, Ocean circulation generated magnetic signals, Earth Planets Space, 58, this issue, 429–437, 2006.CrossRefGoogle Scholar
  32. Marsh, N. and H. Svensmark, Low cloud properties influenced by cosmic rays, Phys. Rev. Lett., 85, 5004–5007, 2000.CrossRefGoogle Scholar
  33. Maus, S. and H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction, Geophys. J. Int., doi:10:1111/j.1365-246X.2005.02691.x, 2005.Google Scholar
  34. Maus, S., H. Lühr, G. Balaris, M. Rother, and M. Mandea, Introducing POMME, the Potsdam Magnetic Model of the Earth, in Earth Observation with CHAMP, Results from Three Years in Orbit, edited by C. Reigberg, H. Lühr, P. Schwintzer, J. Wickert, Springer, Berlin, pp. 293–298, 2005.CrossRefGoogle Scholar
  35. Maus, S., M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kuvshinov, and N. Olsen, Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., doi: 10.1111/j.1365-246X.2005.02833.x, 2006a.Google Scholar
  36. Maus, S., H. Lühr, and M. Purucker, Simulation of the high-degree litho-spheric field recovery for the Swarm constellation of satellites, Earth Planets Space, 58, this issue, 397–407, 2006b.CrossRefGoogle Scholar
  37. Moretto, T., S. Vennerstrøm, N. Olsen, L. Raststätter, and J. Raeder, Using global magnetospheric models for simulation and interpretation of Swarm external field measurements, Earth Planets Space, 58, this issue, 439–449, 2006.CrossRefGoogle Scholar
  38. Neubert, T., M. Mandea, G. Hulot, R. von Frese, F. Primdahl, J. L. Jørgensen, E. Friis-Christensen, P. Stauning, N. Olsen, and T. Risbo, Ørsted satellite captures high-precision geomagnetic field data, EOS Transactions, AGU, 82(7), 81–88, 2001.CrossRefGoogle Scholar
  39. Olsen, N., Induction studies with satellite data, Surveys in Geophysics, 20, 309–340, 1999.CrossRefGoogle Scholar
  40. Olsen, N., T. J. Sabaka, and F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF, Earth Planets Space, 57, 1141–1149, 2005.CrossRefGoogle Scholar
  41. Olsen, N., H. Lühr, T. J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, and S. Choi, CHAOS—A model of Earths magnetic field derived from CHAMP, Ørsted and SAC-C magnetic satellite data, Geophys. J. Int., doi: 10.1111/j.1365-246X.2005.(in press), 2006.Google Scholar
  42. Olsen, N., R. Haagmans, T. J. Sabaka, A. Kuvshinov, S. Maus, M. E. Purucker, M. Rother, V. Lesur, and M. Mandea, The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth’s magnetic field using synthetic data, Earth Planets Space, 58, this issue, 359–370, 2006a.CrossRefGoogle Scholar
  43. Pais, A. and G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows, Phys. Earth Planet Inter, 118, 291–316, 2000.CrossRefGoogle Scholar
  44. Pais, M. A., O. Oliveira, and F. Nogueira, Nonuniqueness of inverted core-mantle boundary flows and deviations from tangential geostrophy, J. Geophys. Res, 109, B08105, doi:10.1029/2004JB003012, 2004.Google Scholar
  45. Purucker, M., B. Langlais, N. Olsen, G. Hulot, and M. Mandea, The southern edge of cratonic North America: Evidence from new satellite magnetometer observations, Geophys. Res. Lett., 29(15), ORS1, 2002a.Google Scholar
  46. Purucker, M., H. McCreadie, S. Vennerstroem, G. Hulot, N. Olsen, H. Luehr, and E. Garnero, Highlights from AGU’s virtual session on new magnetic field satellites, EOS, 83, 368, 2002b.CrossRefGoogle Scholar
  47. Reigber, C., H. Lühr, and P. Schwintzer, CHAMP mission status, Adv. Space Res., 30, 129–134, 2002.CrossRefGoogle Scholar
  48. Ritter, P. and H. Lühr, Curl-B technique applied to Swarm constellation for determining field-aligned currents, Earth Planets Space, 58, this issue, 463–476, 2006.CrossRefGoogle Scholar
  49. Sabaka, T. J. and N. Olsen, Enhancing comprehensive inversions using the Swarm constellation, Earth Planets Space, 58, this issue, 371–395, 2006.CrossRefGoogle Scholar
  50. Sabaka, T. J., N. Olsen, and M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP, Geophys. J. Int., 159(2), 521–547, 2004.CrossRefGoogle Scholar
  51. Tyler, R. H., S. Maus, and H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239–241, 2003.CrossRefGoogle Scholar
  52. Vennerstrom, S., T. Moretto, L. Raststätter, and J. Raeder, Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field, Earth Planets Space, 58, this issue, 451–461, 2006.CrossRefGoogle Scholar
  53. Yu, F. and R. P. Turco, From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation, J. Geophys. Res., 106, 4797–4814, 2001.CrossRefGoogle Scholar
  54. Zatman, S. and J. Bloxham, Torsional oscillations and the magnetic field within the Earth’s core, Nature, 388, 760–763, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  1. 1.Danish National Space CenterCopenhagenDenmark
  2. 2.GeoForschungsZentrum PotsdamPotsdamGermany
  3. 3.Institut de Physique du Globe de ParisParisFrance

Personalised recommendations