# Finding efficient frontier of process parameters for plastic injection molding

- 6.2k Downloads
- 10 Citations

## Abstract

Product quality for plastic injection molding process is highly related with the settings for its process parameters. Additionally, the product quality is not simply based on a single quality index, but multiple interrelated quality indices. To find the settings for the process parameters such that the multiple quality indices can be simultaneously optimized is becoming a research issue and is now known as finding the efficient frontier of the process parameters. This study considers three quality indices in the plastic injection molding: war page, shrinkage, and volumetric shrinkage at ejection. A digital camera thin cover is taken as an investigation example to show the method of finding the efficient frontier. Solidworks and Moldflow are utilized to create the part’s geometry and to simulate the injection molding process, respectively. Nine process parameters are considered in this research: injection time, injection pressure, packing time, packing pressure, cooling time, cooling temperature, mold open time, melt temperature, and mold temperature. Taguchi’s orthogonal array L27 is applied to run the experiments, and analysis of variance is then used to find the significant process factors with the significant level 0.05. In the example case, four process factors are found significant. The four significant factors are further used to generate 3^{4} experiments by complete experimental design. Each of the experiments is run in Moldflow. The collected experimental data with three quality indices and four process factors are further used to generate three multiple regression equations for the three quality indices, respectively. Then, the three multiple regression equations are applied to generate 1,225 theoretical datasets. Finally, data envelopment analysis is adopted to find the efficient frontier of the 1,225 theoretical datasets. The found datasets on the efficient frontier are with the optimal quality. The process parameters of the efficient frontier are further validated by Moldflow. This study demonstrates that the developed procedure has proved a useful optimization procedure that can be applied in practice to the injection molding process.

## Keywords

Injection molding Taguchi’s orthogonal array Mutiple regression analysis Data envelopment analysis Optimization## Introduction

Along with the rapid progress of production techniques for high-tech products, better and better quality of products is required for the survival in the current market. Besides providing various functions, the trend of the design for plastic products is light, thin, short, and small. Therefore, the setting of process parameters for plastic products has a remarkable influence on their quality (Huang and Tai 2001).

Injection molding is one of the most important techniques for polymer processing (to manufacture plastic products) because of its high speed for molding and its capability of manufacturing complex geometric shapes of products. Besides, injection molding is capable of mass production, so it is widely used for many products, especially for electronic products, such as computers and communication products. Injection molding is usually adopted to produce thin parts or thin covers for these products.

Currently, there are two categories for the setting of process parameters for injection molding: one is based on the technicians’ previous experience and the other takes advantage of mold flow analysis softwares, such as Moldflow (used in this study) to find the initial values for process parameters (by running various simulations on these moldflow analyses). However, no method can quickly find the reasonable combination of process parameters. In addition, trial and error is required for both methods, and the process of trial and error consumes a significant amount of time and cost. Therefore, both methods cannot meet the requirement of the current market.

Researchers have applied various kinds of methods, e.g., artificial neural network and/or fuzzy logic (Liao et al. 2004a, b; Kurtaran et al. 2005; Ozcelik and Erzurumlu 2006), genetic algorithm (Kurtaran et al. 2005; Ozcelik and Erzurumlu 2006), design of experiments (Huang and Tai, 2001; Liao et al. 2004a, b), and response surface method (Ozcelik and Erzurumlu 2005; Kurtaran and Erzurumlu 2006; Chen et al. 2010) to optimize the initial process parameter setting of plastic injection molding. However, most studies focus on the single optimal combination of process parameters by different optimization techniques. It is well known that when multiple quality characteristics are considered, the trade-off relationships exist among these quality characteristics, and these relationships make the task of finding the optimal combination rather complicated if not impossible. Instead of finding a single optimal combination of process parameters, this research seeks the efficient frontier of process parameters by data envelopment analysis (DEA).

The remainder of this paper is organized as follows: the ‘Literature review on the optimization of process parameters for injection molding’ section will review related work in the literature. The properties of the material and product used in this paper will be addressed in the ‘Materials and product’ section. The ‘Experimental design and methodology’ section will discuss the experimental design and the procedure of finding the efficient frontier of process parameters. Finally, the summary and concluding remarks are provided in the ‘Summary and conclusions’ section.

## Literature review on the optimization of process parameters for injection molding

The literature of optimization for injection molding is briefly addressed in this section. Kim and Lee (1997) discussed different geometries for plastic parts to improve the parts’ warpage by Taguchi’s orthogonal experiment design. To avoid producing flaws of silver streaks for automobile plastic bumpers, Taguchi’s optimization method is utilized to decide the optimal values for the process parameters by Chen et al. (1997). The same optimization method was also used by several works (Huang and Tai 2001; Liu and Chen 2002; Liao et al. 2004a, b; Oktem et al. 2007) to find the optimal combinations of process parameters for different plastic products. In these works, warpages and shrinkages of plastic parts were usually considered as their quality indices. Moldflow, a mold flow analysis software, was used to simulate a real injection machine by Erzurumlu and Ozcelik (2006). Several techniques including the Taguchi’s method, the neural networks, and the genetic algorithm were combined to optimize the process parameters.

The response surface methodology (RSM) is another popular method to optimize the process parameters in the literature. The complete model of RSM was first established by Box and Wilson (1951). To improve two quality indices, within-wafer non-uniformity and the removal rate, of the chemical–mechanical planarization process in semiconductor manufacturing, dual RSM was proposed by Fan (2000) to optimize five process parameters. In order to avoid the difficulty of minimizing both quality indices, one was treated as the primary response put in the objective function and the other was the secondary response placed in the constraint. Two works developed RSM combined with different optimization techniques (Ozcelik and Erzurumlu 2006; Chiang and Chang 2007). Chen et al. (2010) applied dual RSM to improve the quality of plastic injection molding. Warpage is the primary response (and is treated as the objective function), while shrinkage is the secondary response (and is then set as the constraint) in their work.

For multiple quality indices, the above two classes of optimization focus on searching the single optimal combination of process parameters. However, it is known that the trade-off relationships exist among multiple quality indices, so the searching task of the single optimum is not easy. Castro et al. (2007) used DEA technique to find the efficient frontier when six quality indices (related with the part’s geometry) were considered. This research proposes to combine several techniques including experimental design, analysis of variance (ANOVA), multiple regression analysis, and DEA to find the efficient frontier of the process parameters when three essential quality indices, warpage, shrinkage, and volumetric shrinkage at ejection, are under consideration simultaneously.

## Materials and product

Next, the commercial CAE simulation software tool, Moldflow, is utilized to create the finite element model and uses the finite element and finite difference method to solve pressure, flow, and temperature fields of injection molding (Walsh 1993; Mackerle 2005; Shoemaker 2006). The setting in Moldflow to simulate production of the parts is described below.

**Material properties of GE Cycoloy C2950 PC/ABS**

Material property | Value |
---|---|

Recommended mold surface temperature (°C) | 70 |

Recommended melt temperature (°C) | 275 |

Melt density (g/cm | 0.97618 |

Solid density (g/cm | 1.1161 |

Eject temperature (°C) | 113 |

Maximum shear stress (MPa) | 0.4 |

Maximum shear rate (s | 40,000 |

Mold thermal conductivity (W/m °C) | 29 |

Elastic module (MPa) | 200,000 |

Poisson’s ratio | 0.33 |

**Key process parameters and their ranges of operation**

Parameter | Variable | Initial value | Range of operation |
---|---|---|---|

Injection time | INT ( | 1 s | 0.5 to 1.5 s |

Injection pressure | INP ( | 120 MPa | 100 to 140 MPa |

Packing pressure | PP ( | 100 MPa | 80 to 120 MPa |

Packing time | PT ( | 10 s | 7.5 to 12.5 s |

Cooling time | COTI ( | 19 s | 14 to 24 s |

Coolant temperature | COTE ( | 25°C | 20°C to 30°C |

Mold open time | MOO ( | 5 s | 4 to 6 s |

Melt temperature | MET ( | 275°C | 270°C to 280°C |

Mold surface temperature | MOTE ( | 70°C | 65°C to 75°C |

*XY*horizontal plane. In Figure 4, four reference nodes N1991, N1962, N1955, and N2261 are shown, while four edges are formed by these four nodes and are denoted by E1, E2, E3, and E4, respectively.

## Experimental design and methodology

This section presents how to design the experiment as well as the procedure to determine the efficient frontier of process parameters. In the ‘Experimental design’ subsection, the experimental design will be addressed. To effectively find the efficient frontier, ANOVA will be firstly executed to determine the significant process parameters out of the original nine process parameters in ‘Finding significant process parameters by ANOVA’ subsection. The complete design of experiment with four significant process parameters is again executed on Moldflow to have better accuracy of the following regression equations. Then, response regression model will be established in which only significant process parameters are considered in ‘Setting up the regression response model to create the complete dataset’ subsection. This subsection will also present how to create the complete dataset for finding the efficient combinations. Finally, ‘Determining the efficient frontier of process parameters by DEA’ subsection will discuss how to find the efficient frontier by DEA.

### Experimental design

The Taguchi experimental design with orthogonal array is an efficient experimental design for fraction factorial design (Rose 1989; Montgomery 2005). Because there are nine process parameters considered in this research, complete experimental design is just too expensive to execute. Therefore, this research adopts the Taguchi experimental design with orthogonal array, L27, to perform the experiment on Moldflow. The experimental results of L27 is shown in Appendix A. Three levels of each process parameters are assigned to lower bound, mid-point, and upper bound of the range of operation listed in Table 2; for example, levels 1, 2 and 3 of injection time *x*_{1} are 0.5, 1 and 1.5 s, respectively.

### Finding significant process parameters by ANOVA

**Results of ANOVA**

N1991 | N1962 | N1955 | N2261 | E1 | E2 | E3 | E4 | Volume | U | |
---|---|---|---|---|---|---|---|---|---|---|

INT | ◎ | ● | ||||||||

INP | ◎ | ◎ | ◎ | ◎ | ◎ | ◎ | ◎ | ◎ | ● | |

PP | ◎ | ◎ | ◎ | ◎ | ◎ | ◎ | ◎ | ◎ | ● | |

PT | ◎ | ● | ||||||||

COTI | ||||||||||

COTE | ||||||||||

MOO | ||||||||||

MET | ||||||||||

MOTE |

### Setting up the regression response model to create the complete dataset

To obtain a more complete efficient frontier for the process parameters, more data are required. The regression model, the response surface model, is utilized to create more data. In order to have better forecasting accuracy of the regression model, the complete experiment design with four significant process factors is executed again on Moldflow before the regression equations are established. The results are shown in the Appendix B.

**Levels of process parameters**

Process parameter | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
---|---|---|---|---|---|---|---|

Injection pressure (MPa) | 100 | 110 | 120 | 130 | 140 | ||

Injection time (s) | 0.5 | 0.67 | 0.84 | 1 | 1.17 | 1.34 | 1.5 |

Packing pressure (MPa) | 80 | 86.67 | 93.34 | 100 | 106.67 | 113.34 | 120 |

Packing time (s) | 7.5 | 8.75 | 10 | 11.25 | 12.5 |

### Determining the efficient frontier of process parameters by DEA

*K*DMUs, each of which consumes

*N*inputs and produces

*M*outputs. Then, the DEA CCR model can be established as follows:

where *Y*_{ km } is the value of the *m* th output generated by the *k* th DMU, *X*_{ kn } is the value of the *n* th input consumed by the *k* th DMU, *V*_{ n } and *U*_{ m } are *X*_{ kn }’s and *Y*_{ km }’s weights, respectively, whose values are determined by solving the model, *H*_{ k } is the relative efficiency of the *k* th DMU, and *ϵ* is a small positive number. After solving the CCR DEA model, a DMU is on the efficient frontier if its relative efficiency, *H*_{ k }, is equal to 1.

Three quality indices, warpage, shrinkage, and volumetric shrinkage at ejection, are considered in this paper. Among these three indices, warpage is treated as the output, while shrinkage and volumetric shrinkage at ejection are two inputs in the DEA model. Because the output in DEA model needs to be maximized and warpage is apparently the minimized quality index, the transformation, 1-warpage, is adopted.

**DMUs on the efficient frontier**

DMU | Score |
---|---|

560 | 100 |

840 | 100 |

871 | 100 |

1,151 | 100 |

1,186 | 100 |

1,187 | 100 |

1,188 | 100 |

1,189 | 100 |

1,190 | 100 |

**The reference counts of the efficient DMUs**

DMU | Reference count |
---|---|

560 | 773 |

840 | 624 |

871 | 402 |

1,151 | 182 |

1,186 | 47 |

1,187 | 0 |

1,188 | 0 |

1,189 | 0 |

1,190 | 0 |

**Levels of process parameters for efficient DMUs**

DMU | ||||||
---|---|---|---|---|---|---|

560 | 840 | 871 | 1,151 | 1,186 | ||

Process parameter | INP | 120 | 130 | 130 | 140 | 140 |

INT | 0.67 | 0.84 | 1 | 1.17 | 1.34 | |

PP | 120 | 120 | 120 | 120 | 120 | |

PT | 12.5 | 12.5 | 7.5 | 7.5 | 7.5 | |

COTI | 19 | 19 | 19 | 19 | 19 | |

COTE | 25 | 25 | 25 | 25 | 25 | |

MOO | 5 | 5 | 5 | 5 | 5 | |

MET | 275 | 275 | 275 | 275 | 275 | |

MOTE | 70 | 70 | 70 | 70 | 70 | |

Quality index (forecasting) | Warp. | 0.0964 | 0.0930 | 0.0906 | 0.0997 | 0.1065 |

Shrink. | 0.1397 | 0.1076 | 0.0814 | 0.0436 | 0.0126 | |

Vol. | 1.9019 | 1.9418 | 2.0416 | 2.3027 | 2.5442 | |

Quality index (real) | Warp. | 0.0796 | 0.0720 | 0.0780 | 0.0820 | 0.1114 |

Shrink. | 0.1232 | 0.9250 | 0.0835 | 0.0597 | −0.0948 | |

Vol. | 2.0650 | 1.9610 | 2.0680 | 2.8260 | 3.3670 |

^{4}= 81 data points which are utilized to set up the regression equations in ‘Setting up the regression response model to create the complete dataset’ subsection. The comparison is accomplished by executing DEA on 5 efficient DMUs found in this paper and 81 data points. The results are shown in Tables 8 and 9. From Table 9, it can be observed that among five efficient DMUs found in this paper, three DMUs are still on the efficient frontier and one DMU is relatively highly efficient with 94.18% DEA score. Only DMU 1,186 is not quite efficient with 71.28% DEA score, and this may be due to the error of the regression equation at this DMU. It is fair to suggest that the error induced by the regression equation at most of the points is fairly small. Therefore, the efficient frontier of process parameters found by this paper with only 108 (=27 + 81) repeats of experiments can really provide good combinations of process parameters for decision making.

**Relatively efficient DMUs**

DMU | Score |
---|---|

44 | 100 |

45 | 100 |

| |

| |

| |

54 | 97.82 |

52 | 97.80 |

53 | 97.13 |

43 | 96.88 |

| |

**Efficient DMUs with positive counts**

DMU | Reference count |
---|---|

840 | 62 |

1,151 | 12 |

871 | 9 |

45 | 9 |

44 | 1 |

## Summary and conclusions

Part quality for plastic injection molding is often evaluated by multiple interrelated quality indices, and each quality index is highly related with process parameters. This paper proposes a method of finding the complete efficient frontier of process parameters with only a few times of experiments when multiple quality indices are considered for plastic injection molding. The thin front cover of a digital camera is provided as the example of executing the method. Based on the literature, nine process parameters are considered in this research. The experimental design with the Taguchi orthogonal L27 is used to run the experiment on Moldflow. ANOVA is then executed to find significant parameters to affect the part’s quality indices, and the results show that four out of nine parameters are significant with the significant level 0.05. In order to set up the complete efficient frontier of DEA analysis, more data are required, and the regression equations are used to create them. To have good accuracy of the multiple regressed equations, the complete experimental design with 3^{4} times (only four significant process parameters are considered) of experiments is again executed on Moldflow. The multiple regression equations are then set up and are used to produce the dataset for DEA analysis. The results of DEA analysis shows that the five combinations are on the efficient frontier.

To show the efficiency of these combinations suggested in this paper, DEA analysis is again conducted on them as well as the results of the experiments of 3^{4} times used for establishing multiple regression equations. The results show that only one combination is not as efficient mainly because of the error of the regressed equations at this combination. Hence, the method proposed here is believed indeed can find the efficient frontier of process parameters with only a few times of experiments.

The classic DEA method, CCR, is used in this paper; in the future, some other DEA methods, such as BCC, can be used, and the performance of each method can be compared. Another possible future research topic is to evaluate the performance of Moldflow analysis.

### Appendix

The results of L27 and 81 are presented in Tables 10 and 11.

**Experimental results of L27 array**

N1991 | N1962 | N1955 | N2261 | E1 | E2 | E3 | E4 | Volume | |
---|---|---|---|---|---|---|---|---|---|

1 | 0.2222 | 0.2118 | 0.2151 | 0.203 | 0.4014 | 0.1292 | 0.3728 | 0.171 | 4.384 |

2 | 0.2137 | 0.2027 | 0.2077 | 0.1953 | 0.3856 | 0.1226 | 0.3598 | 0.1619 | 4.346 |

3 | 0.2185 | 0.2082 | 0.2126 | 0.2001 | 0.395 | 0.1273 | 0.3681 | 0.1666 | 4.379 |

4 | 0.1436 | 0.1322 | 0.1392 | 0.125 | 0.2532 | 0.0529 | 0.2346 | 0.0913 | 3.281 |

5 | 0.1513 | 0.1416 | 0.1466 | 0.133 | 0.2675 | 0.0643 | 0.2475 | 0.1006 | 3.468 |

6 | 0.1416 | 0.1301 | 0.137 | 0.1223 | 0.2491 | 0.0516 | 0.2308 | 0.0896 | 3.154 |

7 | 0.1032 | 0.0902 | 0.098 | 0.0821 | 0.173 | 0.0035 | 0.1579 | 0.0379 | 3.936 |

8 | 0.0927 | 0.0798 | 0.0877 | 0.0693 | 0.1497 | −0.0153 | 0.1321 | 0.0187 | 4.095 |

9 | 0.0986 | 0.0867 | 0.0947 | 0.0783 | 0.165 | −0.0014 | 0.1503 | 0.0341 | 3.973 |

10 | 0.1602 | 0.1564 | 0.1612 | 0.1521 | 0.2877 | 0.0609 | 0.2717 | 0.1046 | 4.337 |

11 | 0.1455 | 0.1416 | 0.1412 | 0.1356 | 0.262 | 0.0564 | 0.2432 | 0.0959 | 3.938 |

12 | 0.1414 | 0.1365 | 0.1354 | 0.1301 | 0.2526 | 0.0504 | 0.2309 | 0.0896 | 3.989 |

13 | 0.0697 | 0.0593 | 0.0776 | 0.0559 | 0.083 | −0.0475 | 0.0739 | −0.013 | 2.063 |

14 | 0.0677 | 0.0593 | 0.0718 | 0.0542 | 0.091 | −0.0379 | 0.0797 | −0.0041 | 2.018 |

15 | 0.0735 | 0.0618 | 0.0824 | 0.0575 | 0.0873 | −0.0491 | 0.0779 | −0.0126 | 2.086 |

16 | 0.1367 | 0.1358 | 0.1243 | 0.1288 | 0.2529 | 0.0685 | 0.2254 | 0.1026 | 3.593 |

17 | 0.1352 | 0.134 | 0.1249 | 0.1289 | 0.2506 | 0.0647 | 0.2261 | 0.0994 | 3.369 |

18 | 0.131 | 0.1303 | 0.1192 | 0.1246 | 0.243 | 0.059 | 0.2161 | 0.0937 | 3.526 |

19 | 0.1446 | 0.1537 | 0.1601 | 0.1062 | 0.2521 | 0.0288 | 0.2252 | 0.0535 | 7.185 |

20 | 0.1339 | 0.1483 | 0.1488 | 0.1027 | 0.247 | 0.0297 | 0.2139 | 0.0475 | 6.509 |

21 | 0.1216 | 0.1423 | 0.144 | 0.1021 | 0.2177 | 0.0251 | 0.1904 | 0.0434 | 6.474 |

22 | 0.1563 | 0.1809 | 0.1834 | 0.1507 | 0.3036 | 0.0629 | 0.2963 | 0.0983 | 7.855 |

23 | 0.15 | 0.1893 | 0.1672 | 0.1452 | 0.3118 | 0.0546 | 0.2718 | 0.0897 | 7.12 |

24 | 0.1786 | 0.2015 | 0.1828 | 0.1496 | 0.35 | 0.0686 | 0.3018 | 0.106 | 7.41 |

25 | 0.0673 | 0.0611 | 0.0939 | 0.0325 | 0.0558 | −0.0288 | 0.0621 | −0.0166 | 3.294 |

26 | 0.0951 | 0.0826 | 0.1094 | 0.051 | 0.1015 | −0.0014 | 0.1003 | −0.0039 | 3.055 |

27 | 0.0794 | 0.0698 | 0.0991 | 0.0393 | 0.0651 | −0.0164 | 0.0728 | −0.0138 | 3.21 |

**Moldflow execution results**

Warpage | Shrinkage | Volume shrinkage at ejection | |
---|---|---|---|

1 | 0.2185 | 0.395 | 4.379 |

2 | 0.2182 | 0.3944 | 4.378 |

3 | 0.2169 | 0.3922 | 4.364 |

4 | 0.1611 | 0.2867 | 3.611 |

5 | 0.161 | 0.2863 | 3.61 |

6 | 0.1601 | 0.2847 | 3.596 |

7 | 0.1154 | 0.1973 | 2.724 |

8 | 0.1156 | 0.1969 | 2.723 |

9 | 0.1145 | 0.1951 | 2.706 |

10 | 0.2006 | 0.3635 | 4.08 |

11 | 0.2003 | 0.3629 | 4.079 |

12 | 0.1998 | 0.3622 | 4.078 |

13 | 0.1451 | 0.2556 | 3.288 |

14 | 0.1452 | 0.2551 | 3.287 |

15 | 0.1448 | 0.2545 | 3.286 |

16 | 0.0982 | 0.1632 | 2.25 |

17 | 0.098 | 0.1629 | 2.251 |

18 | 0.0978 | 0.1626 | 2.249 |

19 | 0.2271 | 0.4148 | 4.56 |

20 | 0.2264 | 0.4134 | 4.516 |

21 | 0.2253 | 0.4117 | 4.503 |

22 | 0.1612 | 0.2931 | 3.683 |

23 | 0.1607 | 0.2919 | 3.642 |

24 | 0.1596 | 0.2905 | 3.627 |

25 | 0.1111 | 0.1965 | 2.683 |

26 | 0.1103 | 0.195 | 2.642 |

27 | 0.1092 | 0.1931 | 2.264 |

28 | 0.1952 | 0.3589 | 4.869 |

29 | 0.195 | 0.3589 | 4.879 |

30 | 0.1981 | 0.3646 | 4.958 |

31 | 0.1472 | 0.265 | 4.016 |

32 | 0.1471 | 0.2651 | 4.023 |

33 | 0.1487 | 0.2679 | 4.073 |

34 | 0.1068 | 0.1776 | 3.158 |

35 | 0.107 | 0.1776 | 3.163 |

36 | 0.1084 | 0.1805 | 3.2 |

37 | 0.136 | 0.2522 | 3.551 |

38 | 0.1335 | 0.2447 | 3.509 |

39 | 0.1332 | 0.2471 | 3.506 |

40 | 0.0982 | 0.1743 | 2.926 |

41 | 0.096 | 0.1696 | 2.882 |

42 | 0.0957 | 0.1691 | 2.883 |

43 | 0.078 | 0.0835 | 2.068 |

44 | 0.0775 | 0.0779 | 2.048 |

45 | 0.0778 | 0.0772 | 2.054 |

46 | 0.1528 | 0.2846 | 3.924 |

47 | 0.153 | 0.2847 | 3.939 |

48 | 0.1517 | 0.2827 | 3.921 |

49 | 0.1068 | 0.197 | 3.146 |

50 | 0.1074 | 0.1973 | 3.155 |

51 | 0.1063 | 0.1952 | 3.138 |

52 | 0.0674 | 0.1021 | 2.015 |

53 | 0.0678 | 0.1027 | 2.028 |

54 | 0.0677 | 0.1007 | 2.014 |

55 | 0.2068 | 0.3438 | 7.623 |

56 | 0.1449 | 0.2523 | 3.853 |

57 | 0.2079 | 0.3452 | 6.844 |

58 | 0.1528 | 0.2605 | 4.782 |

59 | 0.1465 | 0.2469 | 4.573 |

60 | 0.1712 | 0.2751 | 6.899 |

61 | 0.1617 | 0.2321 | 7.921 |

62 | 0.1614 | 0.2345 | 6.631 |

63 | 0.1618 | 0.2355 | 8.349 |

64 | 0.1954 | 0.3269 | 7.239 |

65 | 0.1214 | 0.2301 | 3.745 |

66 | 0.1751 | 0.3106 | 6.779 |

67 | 0.1362 | 0.1936 | 4.24 |

68 | 0.1366 | 0.194 | 4.355 |

69 | 0.1352 | 0.1922 | 4.284 |

70 | 0.108 | 0.0802 | 3.177 |

71 | 0.1049 | 0.0744 | 3.16 |

72 | 0.1049 | 0.0746 | 3.165 |

73 | 0.1021 | 0.1438 | 3.199 |

74 | 0.1003 | 0.1455 | 3.186 |

75 | 0.1004 | 0.1425 | 3.197 |

76 | 0.1011 | 0.078 | 3.2 |

77 | 0.0982 | 0.0732 | 3.206 |

78 | 0.0981 | 0.0721 | 3.21 |

79 | 0.1165 | −0.063 | 3.203 |

80 | 0.1137 | −0.0656 | 3.22 |

81 | 0.1132 | −0.0662 | 3.224 |

## Notes

### Acknowledgements

The authors would like to thank financial support from the research project 98-2221-E-029-019, National Science Council of Taiwan. The authors are grateful to the expert anonymous reviewers and the editor-in-chief whose comments and suggestions considerably improved this article.

## Supplementary material

## References

- Box GEP, Wilson KB:
**On the experimental attainment of optimum condition.***J Royal Statistic Soc*1951,**13:**1–45.zbMATHMathSciNetGoogle Scholar - Castro CE, Ríos MC, Castro JM, Lilly B:
**Multiple criteria optimization with variability considerations in injection molding.***Polym Eng Sci*2007,**47**(4):400–409. 10.1002/pen.20639CrossRefGoogle Scholar - Charnes A, Cooper WW, Rhodes E:
**Measuring the efficiency of decision making units.***Eur J Oper Res*1978,**2:**429–444. 10.1016/0377-2217(78)90138-8zbMATHMathSciNetCrossRefGoogle Scholar - Chen ZB, Turng LS:
**A review of current developments in process and quality control for injection molding.***Adv Polym Technol*2005,**24**(3):165–182. 10.1002/adv.20046CrossRefGoogle Scholar - Chen RS, Lee HH, Yu CY:
**Application of Taguchi’s method on the optimal process design of an injection molded PC/PBT automobile bumper.***Compos Struct*1997,**39:**209–214. 10.1016/S0263-8223(97)00110-4CrossRefGoogle Scholar - Chen WL, Huang CY, Hung CW:
**Optimization of plastic injection molding process by dual response surface method with non-linear programming.***Computations Engineering*2010,**27**(8):951–966. 10.1108/02644401011082971zbMATHCrossRefGoogle Scholar - Chiang KT, Chang FP:
**Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology.***Int J Adv Manuf Technol*2007,**35:**468–479. 10.1007/s00170-006-0739-4CrossRefGoogle Scholar - Erzurumlu T, Ozcelik B:
**Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method.***Mater Des*2006,**27:**853–861. 10.1016/j.matdes.2005.03.017CrossRefGoogle Scholar - Fan SK:
**Quality improvement of chemical–mechanical wafer planarization process in semiconductor manufacturing using a combined generalized linear modeling - non-linear programming approach.***Int J Prod Res*2000,**13:**3011–3029.CrossRefGoogle Scholar - Huang MC, Tai CC:
**The effective factors in the warpage problem of an injection-molded part with a thin shell feature.***J Mater Process Technol*2001,**110:**1–9. 10.1016/S0924-0136(00)00649-XCrossRefGoogle Scholar - Kim BH, Lee BH:
**Variation of part wall thicknesses to reduce warpage of injection-molded part: robust design against process variability.***Polymer Plast Tech Eng*1997,**36**(5):791–807. 10.1080/03602559708000661CrossRefGoogle Scholar - Kurtaran H, Erzurumlu T:
**Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm.***Int J Adv Manuf Technol*2006,**27:**468–472. 10.1007/s00170-004-2321-2CrossRefGoogle Scholar - Kurtaran H, Ozcelik B, Erzurumlu T:
**Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm.***J Mater Process Technol*2005,**169**(3):314–319.CrossRefGoogle Scholar - Liao SJ, Hsieh WH, Wang JT, Su YC:
**Shrinkage and warpage prediction of injection-molded thin-wall parts using artificial neural networks.***Polym Eng Sci*2004,**44:**2029–2040. 10.1002/pen.20206CrossRefGoogle Scholar - Liao SJ, Chang DY, Chen HJ, Ho JR, Yau HT, Hsieh WH:
**Optimal process conditions of shrinkage and warpage of thin-wall parts.***Polym Eng Sci*2004,**44:**917–928. 10.1002/pen.20083CrossRefGoogle Scholar - Liu SJ, Chen CF:
**Significance of processing parameters on the warpage of rotationally molded parts.***J Reinf Plast Compos*2002,**21**(8):723–733. 10.1177/073168402128988454CrossRefGoogle Scholar - Mackerle J:
**Finite element modelling of ceramics and glass, an addendum – a bibliography (1998–2004).***Eng Comput*2005,**22**(3):297–373. 10.1108/02644400510588102zbMATHCrossRefGoogle Scholar - Montgomery DC:
*Introduction to Statistical Quality Control*. New York: Wiley; 2005.zbMATHGoogle Scholar - Oktem H, Erzurumlu T, Uzman I:
**Application of Tauguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part.***Mater Des*2007,**27:**1271–1278.CrossRefGoogle Scholar - Ozcelik B, Erzurumlu T:
**Determination of effecting dimensional parameters on warpage of thin shell plastic parts using integrated response surface method and genetic algorithm.***Int Comm Heat Mass Tran*2005,**32**(8):1085–1094. 10.1016/j.icheatmasstransfer.2004.10.032CrossRefGoogle Scholar - Ozcelik B, Erzurumlu T:
**Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm.***J Mater Process Technol*2006,**171:**437–445. 10.1016/j.jmatprotec.2005.04.120CrossRefGoogle Scholar - Rose PJ:
*Taguchi Techniques for Quality Engineering*. New York: McGraw-Hill; 1989.Google Scholar - Shoemaker J:
*Moldflow Design Guide: A Resource for Plastics Engineers*. Cincinnati: Hanser Gardner Publications; 2006.CrossRefGoogle Scholar - Walsh SF:
**Shrinkage and warpage prediction for injection molded components.***J Reinf Plast Compos*1993,**12:**769–777. 10.1177/073168449301200703CrossRefGoogle Scholar

## Copyright information

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.