Advertisement

Comparison of three multitrait methods for QTL detection

  • Hélène GilbertEmail author
  • Pascale Le Roy
Open Access
Research

Abstract

A comparison of power and accuracy of estimation of position and QTL effects of three multitrait methods and one single trait method for QTL detection was carried out on simulated data, taking into account the mixture of full and half-sib families. One multitrait method was based on a multivariate function as the penetrance function (MV). The two other multitrait methods were based on univariate analysis of linear combination(s) (LC) of the traits. One was obtained by a principal component analysis (PCA) performed on the phenotypic data. The second was based on a discriminate analysis (DA). It calculates a LC of the traits at each position, maximising the ratio between the genetic and the residual variabilities due to the putative QTL. Due to its number of parameters, MV was less powerful and accurate than the other methods. In general, DA better detected QTL, but it had lower accuracy for the QTL effect estimation when the detection power was low, due to higher bias than the other methods. In this case, PCA was better. Otherwise, PCA was slightly less powerful and accurate than DA. Compared to the single trait method, power can be improved by 30% to 100% with multitrait methods.

Keywords

multitrait QTL sib families simulations 

(To access the full article, please see PDF)

Copyright information

© INRA, EDP Sciences 2003

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors and Affiliations

  1. 1.Institut national de la recherche agronomiqueStation de génétique quantitative et appliquéeJouy-en-Josas CedexFrance

Personalised recommendations