Skip to main content
Log in

Regulation of CX3CL1 Expression in Human First-Trimester Decidual Cells: Implications for Preeclampsia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

C-X3-C motif ligand 1 (CX3CL1) mediates migration, survival, and adhesion of natural killer (NK) cells, monocytes, and T-cells to endothelial/epithelial cells. Aberrant numbers and/or activation of these decidual immune cells elicit preeclampsia development. Decidual macrophages and NK cells are critical for implantation, while macrophage-derived tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), and NK cell-derived interferon-γ (IFN-γ) are associated with preeclampsia development. Thus, serum and decidual levels of CX3CL1 from first-trimester pregnancy and preeclampsia-complicated term pregnancy were examined by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The effects of incubating primary human first-trimester decidual cells (FTDCs) with estradiol + medroxyprogesterone acetate + either IL-1β or TNF-α and/or IFN-γ on CX3CL1 expression were also assessed by quantitative reverse transcription-polymerase chain reaction and ELISA. The inhibition of each signaling pathway with each kinase and nuclear factor κB (NFκB) inhibitors was evaluated by ELISA. Chemotaxis of CD56bright CD16 NK cells by various concentrations of CX3CL1 was evaluated. C-X3-C motif ligand 1 is expressed by both cytotrophoblasts and decidual cells in first-trimester decidua. C-X3-C motif ligand 1 expression is increased in term decidua but unchanged in first-trimester and term serum of patients with preeclampsia. Interferon-gamma and either IL-1β or TNF-α synergistically upregulated CX3CL1 expression in FTDCs. Coincubation with IL-1β or TNF-α or IFN-γ, mitogen-activated protein kinase kinase 1 and 2 (MEK1/2), c-JUN N-terminal kinase (JNK), and NFκB inhibitors suppressed CX3CL1 production. C-X3-C motif ligand 1 elicited concentration-dependent enhancement of CD56bright CD16 NK cell migration. In conclusion, the current study suggests that decidual cell-secreted CX3CL1 is involved in the later development of preeclampsia, whereas circulating CX3CL1 levels do not predict preeclampsia. Mitogen-activated protein kinase kinase 1 and 2, JNK, and NFκB signaling mediate IL-1β-, TNF-α-, and IFN-γ-induced CX3CL1 production by FTDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004;63(1):1–12.

    CAS  PubMed  Google Scholar 

  2. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003;69(1):1–7.

    CAS  PubMed  Google Scholar 

  3. Pijnenborg R, Vercruysse L, Brosens I. Deep placentation. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):273–285.

    CAS  PubMed  Google Scholar 

  4. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–192.

    CAS  PubMed  Google Scholar 

  5. Velicky P, Knofler M, Pollheimer J. Function and control of human invasive trophoblast subtypes: intrinsic vs. maternal control. Cell Adh Migr. 2016;10(1-2):154–162.

    PubMed  Google Scholar 

  6. Paolini R, Bernardini G, Molfetta R, Santoni A. NK cells and interferons. Cytokine Growth Factor Rev. 2015;26(2):113–120.

    CAS  PubMed  Google Scholar 

  7. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    PubMed  PubMed Central  Google Scholar 

  8. Lockwood CJ, Huang SJ, Chen CP, et al. Decidual cell regulation of natural killer cell-recruiting chemokines: implications for the pathogenesis and prediction of preeclampsia. Am J Pathol. 2013;183(3):841–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385(6617):640–644.

    CAS  PubMed  Google Scholar 

  10. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Garton KJ, Gough PJ, Blobel CP, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 2001;276(41):37993–8001.

    CAS  PubMed  Google Scholar 

  12. Hundhausen C, Misztela D, Berkhout TA, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood. 2003;102(4):1186–1195.

    CAS  PubMed  Google Scholar 

  13. Hundhausen C, Schulte A, Schulz B, et al. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J Immunol. 2007;178(12):8064–8072.

    CAS  PubMed  Google Scholar 

  14. Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91(4):521–530.

    CAS  PubMed  Google Scholar 

  15. Hannan NJ, Jones RL, White CA, Salamonsen LA. The chemokines, CX3CL1, CCL14, and CCL4, promote human trophoblast migration at the feto-maternal interface. Biol Reprod. 2006;74(5):896–904.

    CAS  PubMed  Google Scholar 

  16. Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192(2):259–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Faas MM, Spaans F, De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front Immunol. 2014;5:298.

    PubMed  PubMed Central  Google Scholar 

  18. Henderson JT, Thompson JH, Burda BU, Cantor A. Preeclampsia screening: evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2017;317(16):1668–1683.

    PubMed  Google Scholar 

  19. Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens. 2014;4(2):97–104.

    CAS  Google Scholar 

  20. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21(suppl A):S25–S30.

    PubMed  Google Scholar 

  21. de Groot CJ, van der Mast BJ, Visser W, De Kuiper P, Weimar W, Van Besouw NM. Preeclampsia is associated with increased cytotoxic T-cell capacity to paternal antigens. Am J Obstet Gynecol. 2010;203(5):496 e1–6.

    Google Scholar 

  22. Wu ZM, Yang H, Li M, et al. Pro-inflammatory cytokine-stimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts. Placenta. 2012;33(3):188–194.

    PubMed  Google Scholar 

  23. Fukui A, Yokota M, Funamizu A, et al. Changes of NK cells in preeclampsia. Am J Reprod Immunol. 2012;67(4):278–286.

    CAS  PubMed  Google Scholar 

  24. Kervancioglu Demirci E, Salamonsen LA, Gauster M. The role of CX3CL1 in fetal-maternal interaction during human gestation. Cell Adh Migr. 2016;10(1-2):189–196.

    PubMed  PubMed Central  Google Scholar 

  25. Banerjee S, Smallwood A, Moorhead J, et al. Placental expression of interferon-gamma (IFN-gamma) and its receptor IFN-gamma R2 fail to switch from early hypoxic to late normotensive development in preeclampsia. J Clin Endocrinol Metab. 2005;90(2):944–952.

    CAS  PubMed  Google Scholar 

  26. Amash A, Holcberg G, Sapir O, Huleihel M. Placental secretion of interleukin-1 and interleukin-1 receptor antagonist in preeclampsia: effect of magnesium sulfate. J Interferon Cytokine Res. 2012;32(9):432–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Walsh SW. TNF alpha concentrations and mRNA expression are increased in preeclamptic placentas. J Reprod Immunol. 1996;32(2):157–169.

    CAS  PubMed  Google Scholar 

  28. Yoshida H, Imaizumi T, Fujimoto K, et al. Synergistic stimulation, by tumor necrosis factor-alpha and interferon-gamma, of fractalkine expression in human astrocytes. Neurosci Lett. 2001;303(2):132–136.

    CAS  PubMed  Google Scholar 

  29. Paludan SR. Synergistic action of pro-inflammatory agents: cellular and molecular aspects. J Leukoc Biol. 2000;67(1):18–25.

    CAS  PubMed  Google Scholar 

  30. Huang SJ, Schatz F, Masch R, et al. Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells. J Repdrod Immunol. 2006;72(1-2):60–73.

    CAS  Google Scholar 

  31. Chen CP, Piao L, Chen X, et al. Expression of interferon gamma by decidual cells and natural killer cells at the human implantation site: implications for preeclampsia, spontaneous abortion, and intrauterine growth restriction. Reprod Sci. 2015;22(11):1461–1467.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Muehlhoefer A, Saubermann LJ, Gu X, et al. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol. 2000;164(6):3368–3376.

    CAS  PubMed  Google Scholar 

  33. Truman LA, Ford CA, Pasikowska M, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008;112(13):5026–5036.

    CAS  PubMed  Google Scholar 

  34. Papadopoulos EJ, Sassetti C, Saeki H, et al. Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Eur J Immunol. 1999;29(8):2551–2559.

    CAS  PubMed  Google Scholar 

  35. Siwetz M, Dieber-Rotheneder M, Cervar-Zivkovic M, et al. Placental fractalkine is up-regulated in severe early-onset preeclampsia. Am J Pathol. 2015;185(5):1334–1343.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li M, Wu ZM, Yang H, Huang SJ. NFκB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab. 2011;96(8):2502–2511.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cahill CM, Rogers JT. Interleukin (IL) 1beta induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IkappaB kinase alpha pathway targeting activator protein-1. J Biol Chem. 2008;283(38):25900–25912.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim MO, Suh HS, Brosnan CF, Lee SC. Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta. J Neurochem. 2004;90(2):297–308.

    CAS  PubMed  Google Scholar 

  39. Renaud SJ, Sullivan R, Graham CH. Tumour necrosis factor alpha stimulates the production of monocyte chemoattractants by extravillous trophoblast cells via differential activation of MAPK pathways. Placenta. 2009;30(4):313–319.

    CAS  PubMed  Google Scholar 

  40. Reddy SA, Huang JH, Liao WS. Phosphatidylinositol 3-kinase in interleukin 1 signaling. Physical interaction with the interleukin 1 receptor and requirement in NFkappaB and AP-1 activation. J Biol Chem. 1997;272(46):29167–29173.

    CAS  PubMed  Google Scholar 

  41. Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol. 1999;19(7):4798–4805.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Allan DS, Rybalov B, Awong G, et al. TGF-beta affects development and differentiation of human natural killer cell subsets. Eur J Immunol. 2010;40(8):2289–2295.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Keskin DB, Allan DS, Rybalov B, et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16− NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A. 2007;104(9):3378–3383.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamaguchi T, Kitaya K, Daikoku N, Yasuo T, Fushiki S, Honjo H. Potential selectin L ligands involved in selective recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. Biol Reprod. 2006;74(1):35–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Joseph Huang MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S.J., Chen, CP., Buchwalder, L. et al. Regulation of CX3CL1 Expression in Human First-Trimester Decidual Cells: Implications for Preeclampsia. Reprod. Sci. 26, 1256–1265 (2019). https://doi.org/10.1177/1933719118815592

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118815592

Keywords

Navigation