Skip to main content

Advertisement

Log in

Mate Choice and the Persistence of Maternal Mortality

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal mortality remains one of the leading causes of death in women of reproductive age in developing countries, and a major concern in some developed countries. It is puzzling why such a condition has not been reduced in frequency, if not eliminated, in the course of evolution. Maternal mortality is a complex phenomenon caused by several physiological and physical factors. Among the physical factors, maternal mortality due to fetopelvic disproportion remains controversial. Several explanations including evolution of bipedal locomotion, rapid brain growth, and nutritional changes and life style changes in settler communities have been proposed. The influences of human reproductive biology and sexual selection have rarely been considered to explain why maternal mortality persisted through human evolution. We entertain the hypothesis that irrespective of the causes, the risks of all factors causing maternal mortality would be aggravated by disassortative mating, specifically male preference for younger females who are generally small statured and at higher risk of obstetric complications. Maternal mortality arising due to sexual selection and mate choice would have the long-term effect of driving widowers toward younger women, often resulting in “child marriage,” which still remains a significant cause of maternal mortality globally. Evolutionarily, such a male driven mating system in polygamous human populations would have prolonged the persistence of maternal mortality despite selection acting against it. The effects may extend beyond maternal mortality because male-mate choice driven maternal mortality would reduce average reproductive life spans of women, thus influencing the evolution of menopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhutta Z, Black ER. Global maternal, newborn, and child health—so near and yet so far. N Engl J Med. 2013;369(23):2226–2235.

    CAS  PubMed  Google Scholar 

  2. Chamberlain G. British maternal mortality in the 19th and early 20th centuries. J R Soc Med. 2006;99(11):559–563.

    PubMed  PubMed Central  Google Scholar 

  3. Loudon I. Maternal mortality in the past and its relevance to developing countries today. Am J Clin Nutr. 2000;72(suppl 1):241S–246S.

    CAS  PubMed  Google Scholar 

  4. WHO. World Health Statistics. Geneva, Switzerland: WHO; 2012.

    Google Scholar 

  5. Andersson T, Bergstrom S, Hogberg U. Swedish maternal mortality in the nineteenth century by different definitions: previous stillbirths but not multiparity risk factor for maternal death. Acta Obs Gyn Scan. 2000;79(8):679–687.

    CAS  Google Scholar 

  6. De Brouwere V. The comparative study of maternal mortality over time: the role of professionalization of childbirth. Soc Hist Med. 2007;20(3):541–562.

    Google Scholar 

  7. Loudon I. Maternal mortality: 1880–1950. Some regional and international comparisons. Soc Hist Med. 1988;1(2):183–228.

    CAS  PubMed  Google Scholar 

  8. Loudon I. On maternal and infant mortality, 1900–1960. Soc Hist Med. 1991;4(1):29–73.

    CAS  PubMed  Google Scholar 

  9. Klasen S. Marriage, bargaining, and intrahousehold resource allocation: excess female mortality among adults in early German development. J Econ Hist. 1998;58(2):432–467.

    Google Scholar 

  10. WHO, UNICEF, UNFPA, Bank TW. Trends in Maternal Mortality: 1990 to 2010. Geneva, Switzerland: World Health Organization; 2015.

    Google Scholar 

  11. Henn BM, Cavalli Sforza L, Feldman MW. The great human expansion. Proc Natl Acad Sci U S A. 2012;109(44):17758–17764.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dolea C, AbouZahr C. Global Burden of Obstructed Labour in the Year 2000. Geneva, Switzerland: World Health Organization; 2003.

    Google Scholar 

  13. Kwast BE. Obstructed labour: its contribution to maternal mortality. Midwifery. 1992;8(1):3–7.

    CAS  PubMed  Google Scholar 

  14. Ronsmans C, Graham WJ; Group LMSSs. Maternal mortality: who, when, where, and why. Lancet. 2006;368(9542):1189–1200.

    PubMed  Google Scholar 

  15. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6): e323–e333.

    PubMed  Google Scholar 

  16. Fantu S, Segni H, Alemseged F. Incidence, causes and outcome of obstructed labor in Jimma University specialized hospital. Ethiop J Health Sci. 2010;20(3):145–151.

    PubMed  PubMed Central  Google Scholar 

  17. Saving Mothers 2005–2007: Fourth report on confidential enquiries into maternal deaths in south Africa. Expanded Executive Summary; Department of Health Annual Report, Republic of South Africa, Johannesburg 2008.

  18. Lovejoy CO. The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture. 2005;21(1):95–112.

    PubMed  Google Scholar 

  19. Rosenberg K. Tehe evolution of modern childbrith. Yearb Phys Anthropol. 1992;35(S15):89–124.

    Google Scholar 

  20. Washburn SL. Tools and human evolution. Sci Am. 1960;203:63–75.

    CAS  PubMed  Google Scholar 

  21. Rosenberg K, Trevathan W. Bipedalism and human birth: the obstetric dilemma. Evol Anthropol. 1996;4(5):161–168.

    Google Scholar 

  22. Trevathan WR. Human Birth: An Evolutionary Perspective. Piscataway, NJ: Transaction Publishers; 2011.

    Google Scholar 

  23. Grabowski M, Roseman CC. Complex and changing patterns of natural selection explain the evolution of the human hip. J Hum Evol. 2015;85:94–110.

    PubMed  Google Scholar 

  24. Dunsworth H, Eccleston L. The evolution of difficult childbirth and helpless hominin infants. Annu Rev Anthropol. 2015;44:55–69.

    Google Scholar 

  25. Wells JC, DeSilva JM, Stock JT. The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Am J Phys Anthropol. 2012;149(suppl 55):40–71.

    PubMed  Google Scholar 

  26. Plavcan JM. Implications of male and female contributions to sexual size dimorphism for inferring behavior in the hominin fossil record. Int J Primatol. 2012;33:1364–1381.

    Google Scholar 

  27. Correia H, Balseiro S, De Areia M. Sexual dimorphism in the human pelvis: testing a new hypothesis. HOMO. 2005;56(2):153–160.

    CAS  PubMed  Google Scholar 

  28. Lovejoy CO. Reexamining human origins in light of Ardipithecus ramidus. Science. 2009;326(5949):74e71–74e78.

    Google Scholar 

  29. DeSilva JM. A shift toward birthing relatively large infants early in human evolution. Proc Natl Acad Sci. 2011;108(3):1022–1027.

    CAS  PubMed  Google Scholar 

  30. Mummert A, Esche E, Robinson J, Armelagos GJ. Stature and robusticity during the agricultural transition: evidence from the bioarchaeological record. Econ Hum Biol. 2011;9(3):284–301.

    PubMed  Google Scholar 

  31. Wells JC. Between Scylla and Charybdis: renegotiating resolution of the ‘obstetric dilemma’ in response to ecological change. Phil Trans R Soc B. 2015;370(1663):20140067.

    PubMed  Google Scholar 

  32. Mitteroecker P, Windhager S, Pavlicev M. Cliff-edge model predicts intergenerational predisposition to dystocia and caesarean delivery. Proc Natl Acad Sci U S A. 2017;114(44):11669–11672.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lande R, Arnold SJ. The measurement of selection on correlated characters. Evolution. 1983;37(6):1210–1226.

    PubMed  Google Scholar 

  34. Hosken DJ, House CM. Sexual selection. Curr Biol. 2011;21(2): R62–R65.

    CAS  PubMed  Google Scholar 

  35. Arnqvist G, Rowe L. Sexual Conflict. Princeton, NJ: Princeton University Press; 2005.

    Google Scholar 

  36. Connallon T, Cox RM, Calsbeek R. Fitness consequences of sex-specific selection. Evolution. 2010;64(6):1671–1682.

    PubMed  Google Scholar 

  37. Whitlock MC, Agrawal AF. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution. 2009;63(3):569–582.

    CAS  PubMed  Google Scholar 

  38. Andersson MB. Sexual Selection. Princeton, NJ: Princeton University Press; 1994.

    Google Scholar 

  39. Geugan JF, Teriokhin AT, Thomas F. Human fertility variation, size-related obstetrical performance and the evolution of sexual stature dimorphism. Proc Biol Sci. 2000;267(1461):2529–2535.

    Google Scholar 

  40. Stulp G, Verhulst S, Pollet TV, Nettle D, Buunk AP. Parental height differences predict the need for an emergency cesarean section. PLoS One. 2011;6(6): e20497.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitteroecker P, Huttegger SM, Fischer B, Pavlicev M. Cliff-edge model of obstetric selection in humans. Proc Natl Acad Sci U S A. 2016;113(51):14680–14685.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Klebanoff MA, Mednick BR, Schulsinger C, Secher NJ, Shiono PH. Father’s effect on infant birth weight. Am J Obstet Gynecol. 1998;178:1022–1026.

    CAS  PubMed  Google Scholar 

  43. Knight B, Shields BM, Turner M, Powell RJ, Yajnik CS, Hattersley AT. Evidence of genetic regulation of fetal longitudinal growth. Early Hum Dev. 2005;81(10):823–831.

    PubMed  Google Scholar 

  44. Leary S, Fall C, Osmond C, et al. Geographical variation in relationships between parental body size and offspring phenotype at birth. Acta Obstet Gynecol Scand. 2006;85(9):1066–1079.

    PubMed  PubMed Central  Google Scholar 

  45. Morrison J, Williams GM, Najman JM, Andersen MJ. The influence of paternal height and weight on birth-weight. Aust N Z J Obstet Gynaecol. 1991;31(2):114–116.

    CAS  PubMed  Google Scholar 

  46. Shah PS. Paternal factors and low birthweight, preterm, and small for gestational age births: a systematic review. Am J Obstet Gynecol. 2010;202(20):103–123.

    PubMed  Google Scholar 

  47. Mascie-Taylor CGN, Boldsen JL. Assortative mating, differential fertility and abnormal pregnancy outcome. Ann Hum Biol. 1988;15(3):223–228.

    CAS  PubMed  Google Scholar 

  48. Mitteroecker P, Fischer B. Adult pelvic shape change is an evolutionary side effect. Proc Natl Acad Sci U S A. 2016;113(26): E3596.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pawlowski B. Variable preferences for sexual dimorphism in height as a strategy for increasing the pool of potential partners in humans. Proc R Soc Lond B. 2003;270(1516):709–712.

    Google Scholar 

  50. Pawowski B, Dunbar RIM, Lipowicz A. Tall men have more reproductive success. Nature. 2000;403(6766):156–157.

    Google Scholar 

  51. Yancey G, Emerson MO. Does height matter? An examination of height preferences in romantic coupling. J Fam Issues. 2016;37(1):53–73.

    Google Scholar 

  52. Sorokowski P, Butovskaya M. Height preferences in humans may not be universal: evidence from the datoga people of Tanzania. Body Image. 2012;9(4):510–516.

    CAS  PubMed  Google Scholar 

  53. Plavcan JM. Understanding dimorphism as a function of changes in male and female traits. Evolutionary Anthropology: Issues, News, and Reviews. 2011;20(4):143–155.

    Google Scholar 

  54. Huseynov A, Zollikofer CP, Coudyzer W, et al. Developmental evidence for obstetric adaptation of the human female pelvis. Proc Natl Acad Sci U S A. 2016;113(19):5227–5232.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Betti L. Human variation in pelvic shape and the effects of climate and past population history. Anat Rec (Hoboken). 2017;300(4):687–697.

    Google Scholar 

  56. Patriquin M, Steyn M, Loth S. Metric analysis of sex differences in South African black and white pelves. Forensic Sci Int. 2005;147(2–3):119–127.

    CAS  PubMed  Google Scholar 

  57. Ruff C. Mechanical constraints on the hominin pelvis and the “obstetrical dilemma”. Anat Rec (Hoboken). 2017;300(5):946–955.

    Google Scholar 

  58. Ruff CB. Morphological adaptation to climate in modern and fossil hominids. Am J Phys Anthropol. 1994;37(S19):65–107.

    Google Scholar 

  59. Ganchimeg T, Ota E, Morisaki N, et al. Pregnancy and childbirth outcomes among adolescent mothers: a World Health Organization Multicountry Study. BJOG. 2014;121(suppl 1):40–48.

    PubMed  Google Scholar 

  60. Malabarey OT, Bayala J, Abenhaim HA. The effect of pelvic size on Cesarean delivery rates: using adolescent maternal age as an unbiased proxy for pelvic size. J Pediatr Adolesc Gynecol. 2012;25(3):190–194.

    PubMed  Google Scholar 

  61. Clark JF, Westney LS, Lawyer CJ. Adolescent pregnancy: a 25-year review. J Natl Med Assoc. 1987;79(4):377.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pereira L, Lira PJ, Ahued AR, Quesnel GBC, Iturralde RPP, Arteaga GC. Maternal morbidity in adolescent pregnancy. Ginecol Obstet Mex. 2002;70:270–274.

    PubMed  Google Scholar 

  63. Lenhard MS, Johnson TR, Weckbach S, Nikolaou K, Friese K, Hasbargen U. Pelvimetry revisited: analyzing cephalopelvic disproportion. Eur J Radiol. 2010;74(3): e107–e111.

    PubMed  Google Scholar 

  64. Tague RG. Maternal mortality or prolonged growth: age at death and pelvic size in three prehistoric Amerindian populations. Am J Phys Anthropol. 1994;95(1):27–40.

    CAS  PubMed  Google Scholar 

  65. Volgyi E, Tylavsky FA, Xu L, et al. Bone and body segment lengthening and widening: a 7-year follow-up study in pubertal girls. Bone. 2010;47(4):773–782.

    PubMed  Google Scholar 

  66. Sharma K, Gupta P, Shandilya S. Age related changes in pelvis size among adolescent and adult females with reference to parturition from Naraingarh, Haryana (India). HOMO. 2016;67(4):273–293.

    PubMed  Google Scholar 

  67. Patton GC, Coffey C, Sawyer SM, et al. Global patterns of mortality in young people: a systematic analysis of population health data. Lancet. 2009;374(9693):881–892.

    PubMed  Google Scholar 

  68. Puts DA. Beauty and the beast: mechanisms of sexual selection in humans. Evol Hum Behav. 2010;31(3):157–175.

    Google Scholar 

  69. Antfolk J, Salo B, Alanko K, et al. Women’s and men’s sexual preferences and activities with respect to the partner’s age: evidence for female choice. Evol Hum Behav. 2015;36(1):73–79.

    Google Scholar 

  70. Buss DM. Sex differences in human mate preferences: evolutionary hypotheses tested in 37 cultures. Behav Brain Sci. 1989;12(1):1–49.

    Google Scholar 

  71. Buss DM, Abbott M, Angleitner A, et al. International preferences in selecting mates a study of 37 cultures. J Cross Cult Psychol. 1990;21(1):5–47.

    Google Scholar 

  72. Buss DM, Shackelford TK, LeBlanc GJ. Number of children desired and preferred spousal age difference: context-specific mate preference patterns across 37 cultures. Evol Hum Behav. 2000;21(5):323–331.

    CAS  PubMed  Google Scholar 

  73. Dunn MJ, Brinton S, Clark L. Universal sex differences in online advertisers age preferences: comparing data from 14 cultures and 2 religious groups. Evol Hum Behav. 2010;31(6):383–393.

    Google Scholar 

  74. Otta E, da Silva Queiroz R, de Sousa Campos L, da Silva MWD, Silveira MT. Age differences between spouses in a Brazilian marriage sample. Evol Hum Behav. 1999;20(2):99–103.

    Google Scholar 

  75. UNICEF. Child marraige: progress and prospects. In UNICEF (Ed.), UNICEF. New York, NY: UNICEF; 2014.

    Google Scholar 

  76. Neal S, Matthews Z, Frost M, Fogstad H, Camacho AV, Laski L. Childbearing in adolescents aged 12–15 years in low resource countries: a neglected issue. New estimates from demographic and household surveys in 42 countries. Acta Obstet Gynecol Scand. 2012;91(9):1114–1118.

    PubMed  Google Scholar 

  77. Gurven M, Kaplan H. Longevity among hunter-gatherers: a cross-cultural examination. Popul Dev Rev. 2007;33(2):321–365.

    Google Scholar 

  78. Tuljapurkar SD, Puleston CO, Gurven MD. Why men matter: mating patterns drive evolution of human lifespan. PLoS One. 2007;2(8): e785.

    PubMed  PubMed Central  Google Scholar 

  79. Morton RA, Stone JR, Singh RS. Mate choice and the origin of menopause. PLoS Comput Biol. 2013;9(6): e1003092.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nelson E, Rolian C, Cashmore L, Shultz S. Digit ratios predict polygyny in early apes, Ardipithecus, Neanderthals and early modern humans but not in Australopithecus. Proc Biol Sci. 2011;278(1711):1556–1563.

    PubMed  Google Scholar 

  81. Gavrilets S. Human origins and the transition from promiscuity to pair-bonding. Proc Natl Acad Sci U S A. 2012;109(25):9923–9928.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dunbar R, Lehmann J, Korstjens AH, Gowlett J. The road to modern humans: time budgets, fission-fusion sociality, kinship and the division of labour in hominin evolution. In: Dunbar RIM, Gamble C, Gowlett JAJ. Lucy to Language: the Benchmark Papers. Oxford, UK: Oxford University Press; 2014:333.

    Google Scholar 

  83. Parker ST. A sexual selection model for hominid evolution. J Hum Evol. 1987;2(3):235–253.

    Google Scholar 

  84. Betzig L. Medieval monogamy. J Fam Hist. 1995;20(2):181–181.

    Google Scholar 

  85. Betzig LL, Mulder MB, Turke P. Human reproductive behaviour: a Darwinian perspective. Cambridge, England: CUP Archive; 1988.

    Google Scholar 

  86. Henrich J, Boyd R, Richerson PJ. The puzzle of monogamous marriage. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012;367(1589):657–669.

    Google Scholar 

  87. Scheidel W. A peculiar institution? Greco ÄìRoman monogamy in global context. The History of the Family. 2009;14(3):280–291.

    Google Scholar 

  88. Jokela M, Rotkirch A, Rickard IJ, Pettay J, Lummaa V. Serial monogamy increases reproductive success in men but not in women. Behav Ecol. 2010;21(5):906–912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama S. Singh PhD.

Additional information

Authors’ Note

R.S.S. conceived the theoretical basis of the hypothesis, interpreted data, designed, and wrote the manuscript. S.J. contributed to hypothesis development, surveyed literature, collected information, interpreted data, designed, and wrote the manuscript. A.K.G. surveyed literature, collected information, and contributed to writing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeeshan, S., Gomes, A.K. & Singh, R.S. Mate Choice and the Persistence of Maternal Mortality. Reprod. Sci. 26, 450–458 (2019). https://doi.org/10.1177/1933719118812730

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118812730

Keywords

Navigation