Skip to main content

Advertisement

Log in

Uteroplacental Insufficiency Impairs Cholesterol Elimination in Adult Female Growth-Restricted Rat Offspring Fed a High-Fat Diet

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uteroplacental insufficiency (UPI) causes intrauterine growth restriction (IUGR) and increases the risk of hypercholesterolemia and cardiovascular disease, which are leading causes of morbidity and mortality worldwide. Little is known about the mechanism through which UPI increases cholesterol. Hepatic Cholesterol 7 alpha-hydroxylase (Cyp7a1) is the rate-limiting and most highly regulated step of cholesterol catabolism to bile acids. Cholesterol 7 alpha-hydroxylase is regulated by transcription factor liver X receptor α (Lxrα) and by microRNA-122. We previously showed that microRNA-122 inhibition of Cyp7a1 translation decreased cholesterol catabolism to bile acids in female IUGR rats at the time of weaning. We hypothesized that UPI would increase cholesterol and microRNA-122 and decrease Cyp7a1 protein and hepatic bile acids in young adult female IUGR rats. To test our hypothesis, we used a rat model of IUGR induced by bilateral uterine artery ligation. Both control and IUGR offspring were exposed to a maternal high-fat diet from before conception through lactation, and all offspring were weaned to a high-fat diet on postnatal day 21. At postnatal day 60, IUGR female rats had increased total and low-density lipoprotein serum cholesterol and hepatic cholesterol, decreased Lxrα and Cyp7a1 protein, and decreased hepatic bile acids. Hepatic microRNA-122 was not changed by UPI. Our findings suggest that UPI decreased cholesterol catabolism to bile acids in young adult female rats through a mechanism independent of microRNA-122.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Dawber TR, Friedman GD, Glennon WE, McNamara PM. Risk factors in coronary heart disease. An evaluation of several serum lipids as predictors of coronary heart disease; the Framingham study. Ann Intern Med. 1964;61:888–899.

    Article  CAS  PubMed  Google Scholar 

  2. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–2128.

    Article  PubMed  Google Scholar 

  3. Huang YT, Lin HY, Wang CH, Su BH, Lin CC. Association of preterm birth and small for gestational age with metabolic outcomes in children and adolescents: a population-based cohort study from Taiwan. Pediatr Neonatol. 2018;59(2):147–153.

    Article  PubMed  Google Scholar 

  4. Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993;307(6918):1524–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2(8663):577–580.

    Article  CAS  PubMed  Google Scholar 

  6. Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974-75. J Epidemiol Community Health. 1978;32(1):34–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robinson SM, Batelaan SF, Syddall HE, et al. Combined effects of dietary fat and birth weight on serum cholesterol concentrations: the Hertfordshire Cohort study. Am J Clin Nutr. 2006;84(1):237–244.

    Article  CAS  PubMed  Google Scholar 

  8. Wright JD, Wang CY, Kennedy-Stephenson J, Ervin RB. Dietary intake of ten key nutrients for public health, United States: 1999–2000. Adv Data. 2003;(334):1–4.

    Google Scholar 

  9. Reynolds RM, Allan KM, Raja EA, et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ. 2013;347:f4539.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song KH, Li T, Owsley E, Chiang JY. A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res. 2010;51(8):2223–2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zinkhan EK, Yu B, Schlegel A. Prenatal exposure to a maternal high fat diet increases hepatic cholesterol accumulation in intrauterine growth restricted rats in part through microRNA-122 inhibition of Cyp7a1. Front Physiol. 2018;9:645.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fu Q, McKnight RA, Yu X, Callaway CW, Lane RH. Growth retardation alters the epigenetic characteristics of hepatic dual specificity phosphatase 5. FASEB J. 2006;20(12):2127–2129.

    Article  CAS  PubMed  Google Scholar 

  13. Hubscher CH, Brooks DL, Johnson JR. A quantitative method for assessing stages of the rat estrous cycle. Biotech Histochem. 2005;80(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  PubMed  Google Scholar 

  15. Zinkhan EK, Chin JR, Zalla JM, et al. Combination of intrauterine growth restriction and a high-fat diet impairs cholesterol elimination in rats. Pediatr Res. 2014;76(5):432–440.

    Article  CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  17. Vlahcevic ZR, Pandak WM, Stravitz RT. Regulation of bile acid biosynthesis. Gastroenterol Clin North Am. 1999;28(1):1–25, v.

    Article  CAS  PubMed  Google Scholar 

  18. Spady DK, Cuthbert JA, Willard MN, Meidell RS. Adenovirus-mediated transfer of a gene encoding cholesterol 7 alpha-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low-density lipoprotein cholesterol. J Clin Invest. 1995;96(2):700–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pandak WM, Schwarz C, Hylemon PB, et al. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol. 2001;281(4): G878–889.

    Article  CAS  PubMed  Google Scholar 

  20. Erickson SK, Lear SR, Deane S, et al. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice. J Lipid Res. 2003;44(5):1001–1009.

    Article  CAS  PubMed  Google Scholar 

  21. Schwarz M, Russell DW, Dietschy JM, Turley SD. Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res. 2001;42(10):1594–1603.

    CAS  PubMed  Google Scholar 

  22. Sohi G, Marchand K, Revesz A, Arany E, Hardy DB. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol. 2011;25(5):785–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ide T, Shimano H, Yoshikawa T, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol. 2003;17(7):1255–1267.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshikawa T, Ide T, Shimano H, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol. 2003;17(7):1240–1254.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Q, Wang E, Ma L, Zhai P. Dietary resveratrol increases the expression of hepatic 7alpha-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6 J mice. Lipids Health Dis. 2012;11:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu X, Qi Y, Tian B, et al. Maternal protein restriction induces alterations in hepatic tumor necrosis factor-alpha/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring. J Clin Biochem Nutr. 2014;55(1):40–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao LY, Xu JY, Shi Z, Englert NA, Zhang SY. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression. Biochem Pharmacol. 2017;142:194–203.

    Article  CAS  PubMed  Google Scholar 

  28. Baumann M, Korner M, Huang X, Wenger F, Surbek D, Albrecht C. Placental ABCA1 and ABCG1 expression in gestational disease: pre-eclampsia affects ABCA1 levels in syncytiotrophoblasts. Placenta. 2013;34(11):1079–1086.

    Article  CAS  PubMed  Google Scholar 

  29. Zinkhan EK, Zalla JM, Carpenter JR, et al. Intrauterine growth restriction combined with a maternal high-fat diet increases hepatic cholesterol and low-density lipoprotein receptor activity in rats. Physiol Rep. 2016;4(13):e12862.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mehta KD, Brown MS, Bilheimer DW, Goldstein JL. The low-density lipoprotein receptor in Xenopus laevis. II. Feedback repression mediated by conserved sterol regulatory element. J Biol Chem. 1991;266(16):10415–10419.

    CAS  PubMed  Google Scholar 

  31. Sorci-Thomas M, Prack MM, Dashti N, Johnson F, Rudel LL, Williams DL. Differential effects of dietary fat on the tissue-specific expression of the apolipoprotein A-I gene: relationship to plasma concentration of high-density lipoproteins. J Lipid Res. 1989;30(9):1397–1403.

    CAS  PubMed  Google Scholar 

  32. Sohi G, Revesz A, Hardy DB. Permanent implications of intrauterine growth restriction on cholesterol homeostasis. Semin Reprod Med. 2011;29(3):246–256.

    Article  CAS  PubMed  Google Scholar 

  33. Hatch NW, Srodulski SJ, Chan HW, Zhang X, Tannock LR, King VL. Endogenous androgen deficiency enhances diet-induced hypercholesterolemia and atherosclerosis in low-density lipoprotein receptor-deficient mice. Gender Med. 2012;9(5):319–328.

    Article  Google Scholar 

  34. Qi Y, Luo H, Hu S, et al. Effects and interactions of prenatal ethanol exposure, a post-weaning high-fat diet and gender on adult hypercholesterolemia occurrence in offspring rats. Cell Physiol Biochem. 2017;44(2):657–670.

    Article  PubMed  Google Scholar 

  35. Guo Y, Luo H, Wu Y, Magdalou J, Chen L, Wang H. Influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Reprod Toxicol. 2018;79:47–56.

    Article  CAS  PubMed  Google Scholar 

  36. Zinkhan EK, Yu B, Callaway CW, McKnight RA. Intrauterine growth restriction combined with a maternal high-fat diet increased adiposity and serum corticosterone levels in adult rat offspring. J Dev Orig Health Dis. 2018;9(3):315–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin K. Zinkhan MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinkhan, E.K., Yu, B. & McKnight, R. Uteroplacental Insufficiency Impairs Cholesterol Elimination in Adult Female Growth-Restricted Rat Offspring Fed a High-Fat Diet. Reprod. Sci. 26, 1173–1180 (2019). https://doi.org/10.1177/1933719118811649

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118811649

Keywords

Navigation