Skip to main content

Advertisement

Log in

Adolescent Preeclampsia: Pathological Drivers and Clinical Prevention

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia is an important cause of maternal and perinatal morbidity, especially in first-time pregnant adolescent women. Although prevention of preeclampsia has been attempted for many decades, effective intervention can only be achieved upon the full elucidation of the risk factors and mechanisms of disease. As the pathogenesis of preeclampsia during adolescence may differ from that in older women, preventive interventions should be tailored accordingly. During adolescence, 4 putative drivers of preeclampsia can be identified. First, uterine immaturity in very young teenagers is likely a major cause of defective deep placentation and adverse reproductive outcome, underscoring the importance of educational programs and public health initiatives focused on teen pregnancy prevention. Second, the association between adolescent obesity and preeclampsia merits further studies on the benefits of weight loss and dietary interventions to improve pregnancy outcome. Third, there is a need for greater awareness of the link between cardiovascular risk factors in young women and early-onset preeclampsia associated with atherosclerosis of the uteroplacental arteries. Finally, infrequent menstruations may prolong uterine immaturity because of lack of “menstrual preconditioning.” This risk factor may be amenable to pharmacological/hormonal preconditioning prior to conception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luikart R. High protein, low caloric diet for the prevention of toxemia of pregnancy. Am J Obstet Gynecol. 1946;52:428–434.

    CAS  PubMed  Google Scholar 

  2. Hamlin RH. The prevention of eclampsia and pre-eclampsia. Lancet. 1952;1(6698):64–68.

    CAS  PubMed  Google Scholar 

  3. Hamlin RH. Prophylaxis against toxemia. Clin Obstet Gynecol. 1958;1(2):369–377.

    CAS  PubMed  Google Scholar 

  4. Beaufils M, Uzan S, Donsimoni R, Colau JC. Prevention of pre-eclampsia by early antiplatelet therapy. Lancet. 1985;1(8433):840–842.

    CAS  PubMed  Google Scholar 

  5. Wallenburg HC, Dekker GA, Makovitz JW, Rotmans P. Low-dose aspirin prevents pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive primigravidae. Lancet. 1986;1(8471):1–3.

    CAS  PubMed  Google Scholar 

  6. Tong S, Mol BW, Walker SP. Preventing preeclampsia with aspirin: does dose or timing matter? Am J Obstet Gynecol. 2017;216(2):95–97.

    PubMed  Google Scholar 

  7. Brosens I, Benagiano G, Brosens JJ. The potential perinatal origin of placentation disorders in the young primigravida. Am J Obstet Gynecol. 2015;212(5):580–585.

    PubMed  Google Scholar 

  8. Darroch JWV, Bankole A, Ashford LS. Adding It Up: Costs and Benefits of Meeting the Contraceptive Needs of Adolescents. New York, NY: Guttmacher Institute; 2016.

    Google Scholar 

  9. UN Population Fund. Adolescent Pregnancy: A Review of the Evidence. New York, NY: UNFPA; 2013.

    Google Scholar 

  10. Martin JAHB, Osterman MJK. Births: final data for 2015. National vital statistics report. Natl Center Health Stat. 2017;66(1):3–4.

    Google Scholar 

  11. The Family Planning Association, UK has highest teenage birth rates in Western Europe. https://www.fpa.org.uk/news/uk-has-highest-teenage-birth-rates-western-europe. Updated April 2016. Accessed May 2018.

  12. Leppalahti S, Gissler M, Mentula M, Heikinheimo O. Is teenage pregnancy an obstetric risk in a welfare society? A population-based study in Finland, from 2006 to 2011. BMJ Open. 2013;3(8):e003225.

    PubMed  PubMed Central  Google Scholar 

  13. Pergialiotis V, Vlachos DE, Gkioka E, Tsotra K, Papantoniou N, Vlachos GD. Teenage pregnancy antenatal and perinatal morbidity: results from a tertiary centre in Greece. J Obstet Gynaecol. 2015;35(6):595–599.

    CAS  PubMed  Google Scholar 

  14. Kaplanoglu M, Bulbul M, Konca C, Kaplanoglu D, Tabak MS, Ata B. Gynecologic age is an important risk factor for obstetric and perinatal outcomes in adolescent pregnancies. Women Birth. 2015;28(4):e119–e123.

    PubMed  Google Scholar 

  15. Medhi R, Das B, Das A, Ahmed M, Bawri S, Rai S. Adverse obstetrical and perinatal outcome in adolescent mothers associated with first birth: a hospital-based case—control study in a tertiary care hospital in North-East India. Adolesc Health Med Ther. 2016;7:37–42.

    PubMed  PubMed Central  Google Scholar 

  16. Kawakita T, Wilson K, Grantz KL, Landy HJ, Huang CC, Gomez-Lobo V. Adverse maternal and neonatal outcomes in adolescent pregnancy. J Pediatr Adolesc Gynecol. 2016;29(2):130–136.

    PubMed  Google Scholar 

  17. Blomberg M, Birch Tyrberg R, Kjolhede P. Impact of maternal age on obstetric and neonatal outcome with emphasis on primiparous adolescents and older women: a Swedish Medical Birth Register Study. BMJ Open. 2014;4(11):e005840.

    PubMed  PubMed Central  Google Scholar 

  18. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “great obstetrical syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201.

    PubMed  Google Scholar 

  19. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905.

    CAS  PubMed  Google Scholar 

  20. Brosens JJ, Parker MG, McIndoe A, Pijnenborg R, Brosens IA. A role for menstruation in preconditioning the uterus for successful pregnancy. Am J Obstet Gynecol. 2009;200(6):615.e1–e6.

    Google Scholar 

  21. Brosens I, Muter J, Gargett C, Puttemans P, Benagiano G, Brosens JJ. The impact of uterine immaturity on obstetrical syndromes during adolescence. Am J Obstet Gynecol. 2017;217(5):546–545.

    PubMed  Google Scholar 

  22. Chen XK, Wen SW, Fleming N, Demissie K, Rhoads GG, Walker M. Teenage pregnancy and adverse birth outcomes: a large population based retrospective cohort study. Int J Epidemiol. 2007;36(2):368–373.

    CAS  PubMed  Google Scholar 

  23. Hamilton WJ, Boyd JD. Development of the human placenta in the first three months of gestation. J Anat. 1960;94:297–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brosens I, Robertson WB, Dixon HG. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol. 1967;93(2):569–579.

    CAS  PubMed  Google Scholar 

  25. Robertson WB, Brosens I, Dixon HG. The pathological response of the vessels of the placental bed to hypertensive pregnancy. J Pathol Bacteriol. 1967;93(2):581–592.

    CAS  PubMed  Google Scholar 

  26. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–191.

    CAS  PubMed  Google Scholar 

  27. Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol. 2002;187(5):1416–1423.

    PubMed  Google Scholar 

  28. Brosens I, Renaer M. On the pathogenesis of placental infarcts in pre-eclampsia. J Obstet Gynaecol Br Commonw. 1972;79(9):794–799.

    CAS  PubMed  Google Scholar 

  29. Weimar CH, Kavelaars A, Brosens JJ, et al. Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos. PLoS One. 2012;7(7):e41424.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Weimar CH, Macklon NS, Post Uiterweer ED, Brosens JJ, Gellersen B. The motile and invasive capacity of human endometrial stromal cells: implications for normal and impaired reproductive function. Hum Reprod Update. 2013;19(5):542–557.

    CAS  PubMed  Google Scholar 

  31. Erlebacher A. Immunology of the maternal—fetal interface. Annu Rev Immunol. 2013;31:387–411.

    CAS  PubMed  Google Scholar 

  32. Brosens JJ, Gellersen B. Death or survival—progesterone-dependent cell fate decisions in the human endometrial stroma. J Mol Endocrinol. 2006;36(3):389–398.

    CAS  PubMed  Google Scholar 

  33. Kajihara T, Jones M, Fusi L, et al. Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol. 2006;20(10):2444–2455.

    CAS  PubMed  Google Scholar 

  34. Muter J, Lucas ES, Chan YW, et al. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells. FASEB J. 2015;29(4):1603–1614.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Leitao B, Jones MC, Fusi L, et al. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J. 2010;24(5):1541–1551.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Muter J, Brighton PJ, Lucas ES, et al. Progesterone-dependent induction of phospholipase C-related catalytically inactive protein 1 (PRIP-1) in decidualizing human endometrial stromal cells. Endocrinology. 2016;157(7):2883–2893.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones MC, Fusi L, Higham JH, et al. Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci U S A. 2006;103(44):16272–16277.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leitao BB, Jones MC, Brosens JJ. The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J. 2011;25(10):3416–3425.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Muter J, Alam MT, Vrljicak P, et al. The glycosyltransferase EOGT regulates adropin expression in decidualizing human endometrium. Endocrinology. 2018;159(2):994–1004.

    CAS  PubMed  Google Scholar 

  40. Shah KM, Webber J, Carzaniga R, et al. Induction of microRNA resistance and secretion in differentiating human endometrial stromal cells. J Mol Cell Biol. 2013;5(1):67–70.

    PubMed  Google Scholar 

  41. Murakami K, Lee YH, Lucas ES, et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology. 2014;155(11):4542–4553.

    PubMed  Google Scholar 

  42. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22(2):137–163.

    CAS  PubMed  Google Scholar 

  43. Lucas ES, Dyer NP, Murakami K, et al. Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells. 2016;34(2):346–356.

    CAS  PubMed  Google Scholar 

  44. Garrido-Gomez T, Dominguez F, Quinonero A, et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc Natl Acad Sci U S A. 2017;114(40):E8468–E8477.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Sabbagh M, Lam EW, Brosens JJ. Mechanisms of endometrial progesterone resistance. Mol Cell Endocrinol. 2012;358(2):208–215.

    CAS  PubMed  Google Scholar 

  46. Aghajanova L, Velarde MC, Giudice LC. Altered gene expression profiling in endometrium: evidence for progesterone resistance. Semin Reprod Med. 2010;28(1):51–58.

    CAS  PubMed  Google Scholar 

  47. Sherwin JR, Hastings JM, Jackson KS, Mavrogianis PA, Sharkey AM, Fazleabas AT. The endometrial response to chorionic gonadotropin is blunted in a baboon model of endometriosis. Endocrinology. 2010;151(10):4982–4993.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gargett CE, Schwab KE, Brosens JJ, Puttemans P, Benagiano G, Brosens I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol Hum Reprod. 2014;20(7):591–598.

    CAS  PubMed  Google Scholar 

  49. Ober WB, Bernstein J. Observations on the endometrium and ovary in the newborn. Pediatrics. 1955;16(4):445–460.

    CAS  PubMed  Google Scholar 

  50. Brosens I, Curcic A, Vejnovic T, Gargett CE, Brosens JJ, Benagiano G. The perinatal origins of major reproductive disorders in the adolescent: research avenues. Placenta. 2015;36(4):341–344.

    CAS  PubMed  Google Scholar 

  51. Metcalf MG, Skidmore DS, Lowry GF, Mackenzie JA. Incidence of ovulation in the years after the menarche. J Endocrinol. 1983;97(2):213–219.

    CAS  PubMed  Google Scholar 

  52. Elizondo-Montemayor L, Hernandez-Escobar C, Lara-Torre E, Nieblas B, Gomez-Carmona M. Gynecologic and obstetric consequences of obesity in adolescent girls. J Pediatr Adolesc Gynecol. 2016;30(2):156–168.

    PubMed  Google Scholar 

  53. Erkenbrack EM, Maziarz JD, Griffith OW, et al. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol. 2018;16(8):e2005594.

    PubMed  PubMed Central  Google Scholar 

  54. Finn CA, Pope M. Vascular and cellular changes in the decidualized endometrium of the ovariectomized mouse following cessation of hormone treatment: a possible model for menstruation. J Endocrinol. 1984;100(3):295–300.

    CAS  PubMed  Google Scholar 

  55. Rudolph M, Docke WD, Muller A, et al. Induction of overt menstruation in intact mice. PLoS One. 2012;7(3):e32922.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Beric BM, Prodanovic Z, Mitrovic M, Curcic O. Uterine hemorrhage in newborn infants [in Croatian]. Jugosl Ginekol Perinatol. 1985;25(3–4):89–91.

    CAS  PubMed  Google Scholar 

  57. Levy JM, Rosenthal R, Dellenbach P, Pequenot JP. Genital crisis in the newborn. repercussion of certain maternal or pregnancy factors on the frequency of neonatal metrorrhagia [in French]. Arch Fr Pediatr. 1964;21:819–827.

    CAS  PubMed  Google Scholar 

  58. Brighton PJ, Maruyama Y, Fishwick K, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife. 2017;6:e31274.

    PubMed  PubMed Central  Google Scholar 

  59. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–446.

    PubMed  PubMed Central  Google Scholar 

  60. Salker MS, Nautiyal J, Steel JH, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One. 2012;7(12):e52252.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertension. 2002;40(4):441–447.

    CAS  PubMed  Google Scholar 

  62. Bell LM, Byrne S, Thompson A, et al. Increasing body mass index z-score is continuously associated with complications of overweight in children, even in the healthy weight range. J Clin Endocrinol Metab. 2007;92(2):517–522.

    CAS  PubMed  Google Scholar 

  63. Raj M, Sundaram KR, Paul M, Sudhakar A, Kumar RK. Body mass index trend and its association with blood pressure distribution in children. J Hum Hypertens. 2010;24(10):652–658.

    CAS  PubMed  Google Scholar 

  64. Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G. Mechanisms of obesity-induced hypertension. Hypertens Res. 2010;33(5):386–393.

    PubMed  Google Scholar 

  65. Baker AM, Haeri S. Estimating risk factors for development of preeclampsia in teen mothers. Arch Gynecol Obstet. 2012;286(5):1093–1096.

    PubMed  Google Scholar 

  66. Poorolajal J, Jenabi E. The association between body mass index and preeclampsia: a meta-analysis. J Matern Fetal Neonatal Med. 2016;29(22):3670–3676.

    PubMed  Google Scholar 

  67. Antoniotti GS, Coughlan M, Salamonsen LA, Evans J. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence. Hum Reprod. 2018;33(4):654–665.

    CAS  PubMed  Google Scholar 

  68. Lovren F, Pan Y, Quan A, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(suppl 11):S185–S192.

    CAS  PubMed  Google Scholar 

  69. Sato K, Yamashita T, Shirai R, et al. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci. 2018;19(5):E1293.

    PubMed  Google Scholar 

  70. Cakmak BD, Dundar B, Acikgoz AS, et al. The relationship between maternal and umbilical cord adropin levels with the presence and severity of preeclampsia. J Perinatal Med. 2017;45(7):879–885.

    CAS  Google Scholar 

  71. Wang H, Gao B, Wu Z, Wang H, Dong M. Alteration of serum adropin level in preeclampsia. Pregnancy Hypertens. 2017;8:6–8.

    PubMed  Google Scholar 

  72. Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev. 2015;(6):CD007145.

  73. Labarrere CA, DiCarlo HL, Bammerlin E, et al. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta. Am J Obstet Gynecol. 2017;216(3):287 e1–287 e16.

    Google Scholar 

  74. Strong JP, Mc GH Jr. The natural history of coronary atherosclerosis. Am J Pathol. 1962;40:37–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Strong JP, Malcom GT, McMahan CA, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the pathobiological determinants of atherosclerosis in youth study. JAMA. 1999;281(8):727–735.

    CAS  PubMed  Google Scholar 

  76. Berenson GS, Wattigney WA, Tracy RE, et al. Atherosclerosis of the aorta and coronary arteries and cardiovascular risk factors in persons aged 6 to 30 years and studied at necropsy (The Bogalusa Heart Study). Am J Cardiol. 1992;70(9):851–858.

    CAS  PubMed  Google Scholar 

  77. Sibai BM, el-Nazer A, Gonzalez-Ruiz A. Severe preeclampsia—eclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am J Obstet Gynecol. 1986;155(5):1011–1016.

    CAS  PubMed  Google Scholar 

  78. Davis EF, Lewandowski AJ, Aye C, et al. Clinical cardiovascular risk during young adulthood in offspring of hypertensive pregnancies: insights from a 20-year prospective follow-up birth cohort. BMJ Open. 2015;5(6):e008136.

    PubMed  PubMed Central  Google Scholar 

  79. Staley JR, Bradley J, Silverwood RJ, et al. Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J Am Heart Assoc. 2015;4(5):e001422.

    PubMed  PubMed Central  Google Scholar 

  80. Davis EF, Lazdam M, Lewandowski AJ, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–e1561.

    PubMed  Google Scholar 

  81. Gooding H, Johnson HM. The unchartered frontier: preventive cardiology between the ages of 15 and 35 years. Curr Cardiovasc Risk Rep. 2016;10:29.

    PubMed  PubMed Central  Google Scholar 

  82. Centers for Disease Control and Prevention, About Teen Pregnancy. https://www.cdc.gov/teenpregnancy/about/index.htm. Updated May 2017. Accessed May 2018.

  83. World Health Organization. Preventing Early Pregnancy and Poor Reproductive Outcomes Among Adolscents in Developing Countries. Geneva, Switzerland: World Health Organization; 2011.

    Google Scholar 

  84. Hentia C, Rizzato A, Camporesi E, et al. An overview of protective strategies against ischemia/reperfusion injury: the role of hyperbaric oxygen preconditioning. Brain Behav. 2018;8(5):e00959.

    PubMed  PubMed Central  Google Scholar 

  85. Moretti C, Cerrato E, Cavallero E, et al. The EUROpean and Chinese Cardiac and Renal Remote Ischemic Preconditioning Study (EURO-CRIPS CardioGroup I): a randomized controlled trial. Int J Cardiol. 2018;257:1–6.

    PubMed  Google Scholar 

  86. Naik S, Larsen SB, Gomez NC, et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature. 2017;550(7677):475–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Eras JL, Saftlas AF, Triche E, Hsu CD, Risch HA, Bracken MB. Abortion and its effect on risk of preeclampsia and transient hypertension. Epidemiology. 2000;11(1):36–43.

    CAS  PubMed  Google Scholar 

  88. Sibai BM, Frangieh A. Maternal adaptation to pregnancy. Curr Opin Obstet Gynecol. 1995;7(6):420–426.

    CAS  PubMed  Google Scholar 

  89. Trogstad L, Magnus P, Skjaerven R, Stoltenberg C. Previous abortions and risk of pre-eclampsia. Int J Epidemiol. 2008;37(6):1333–1340.

    PubMed  PubMed Central  Google Scholar 

  90. Brosens I, Benagiano G. Menstrual preconditioning for the prevention of major obstetrical syndromes in polycystic ovary syndrome. Am J Obstet Gynecol. 2015;213(4):488–493.

    PubMed  Google Scholar 

  91. Sibai BM. Prevention of preeclampsia: a big disappointment. Am J Obstet Gynecol. 1998;179(5):1275–1278.

    CAS  PubMed  Google Scholar 

  92. Bujold E, Roberge S, Lacasse Y, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 pt 1):402–414.

    PubMed  Google Scholar 

  93. Roberge S, Nicolaides K, Demers S, Hyett J, Chaillet N, Bujold E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am J Obstet Gynecol. 2017;216(2):110–120e6.

    CAS  PubMed  Google Scholar 

  94. Meher S, Duley L, Hunter K, Askie L. Antiplatelet therapy before or after 16 weeks’ gestation for preventing preeclampsia: an individual participant data meta-analysis. Am J Obstet Gynecol. 2017;216(2):121–128 e2.

    CAS  PubMed  Google Scholar 

  95. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–622.

    CAS  PubMed  Google Scholar 

  96. Poon LC, Wright D, Rolnik DL, et al. Aspirin for evidence-based preeclampsia prevention trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am J Obstet Gynecol. 2017;217(5):585.e1–585.e5.

    CAS  Google Scholar 

  97. Kalafat E, Sukur YE, Abdi A, Thilaganathan B, Khalil A. Metformin for the prevention of hypertensive disorders of pregnancy in women with gestational diabetes and obesity: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. Epub ahead of print 2018.

  98. Costantine MM, Cleary K, Hebert MF, et al. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am J Obstet Gynecol. 2016;214(6):720 e1–720 e17.

    Google Scholar 

  99. Cluver CA, Walker SP, Mol BW, et al. Double blind, randomised, placebo-controlled trial to evaluate the efficacy of esomeprazole to treat early onset pre-eclampsia (PIE Trial): a study protocol. BMJ Open. 2015;5(10):e008211.

    PubMed  PubMed Central  Google Scholar 

  100. Trapani A Jr, Goncalves LF, Trapani TF, Vieira S, Pires M, Pires MM. Perinatal and hemodynamic evaluation of sildenafil citrate for preeclampsia treatment: a randomized controlled trial. Obstet Gynecol. 2016;128(2):253–259.

    CAS  PubMed  Google Scholar 

  101. O’Connor EA, Evans CV, Burda BU, Walsh ES, Eder M, Lozano P. Screening for obesity and intervention for weight management in children and adolescents: evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2017;317(23):2427–2444.

    PubMed  Google Scholar 

  102. Mohsen IA, Elkattan E, Nabil H, Khattab S. Effect of metformin treatment on endometrial vascular indices in anovulatory obese/overweight women with polycystic ovarian syndrome using three-dimensional power doppler ultrasonography. J Clin Ultrasound. 2013;41(5):275–282.

    PubMed  Google Scholar 

  103. Brownfoot FC, Hastie R, Hannan NJ, et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am J Obstet Gynecol. 2016;214(3):356 e1–356 e15.

    Google Scholar 

  104. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360.

    PubMed  Google Scholar 

  105. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–1081.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan J. Brosens MD, PhD.

Additional information

Authors’ Note

All authors significantly contributed to the preparation and write-up of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brosens, I., Muter, J., Ewington, L. et al. Adolescent Preeclampsia: Pathological Drivers and Clinical Prevention. Reprod. Sci. 26, 159–171 (2019). https://doi.org/10.1177/1933719118804412

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118804412

Keywords

Navigation