Skip to main content

Fetal Membrane Inflammation Induces Preterm Birth Via Toll-Like Receptor 2 in Mice With Chronic Gingivitis

A Correction to this article was published on 14 September 2021

This article has been updated

Abstract

Inflammation is associated with preterm birth. We previously described a mouse model of chronic inflammation-induced preterm birth after dental Porphyromonas gingivalis infection. The aim of this study was to employ this model system to investigate the mechanisms through which enhanced uterine contractility induces preterm birth. Messenger RNA (mRNA) encoding contraction-associated proteins, such as oxytocin receptors, was measured at various gestational time points by real-time polymerase chain reaction (PCR). Spontaneous and oxytocin-induced uterine contractile activity at gestational day 18 was assessed using a tissue organ bath. The expression levels of Toll-like receptor 2 (TLR2), TLR4, cyclooxygenase (COX)-2, nuclear factor-kappa B (NF-κB) p65, and p38 mitogen-activated protein kinase (MAPK) on gestational day 18 were also determined by real-time PCR or Western blotting. Messenger RNA encoding contraction-associated proteins was increased at gestational day 18, and the spontaneous contractile activity (1.6-fold greater area under the contraction curve) and sensitivity to oxytocin (EC50: 8.8 nM vs 2.2 nM) were enhanced in the P gingivalis group compared to those in the control group. In the P gingivalis group, COX-2 mRNA expression was not elevated in the placenta or myometrium but was upregulated 2.3-fold in the fetal membrane. The TLR2 mRNA levels in the fetal membrane were 2.7-fold higher in the P gingivalis group, whereas TLR4 levels were not elevated. Activation of the NF-κB p65 and p38 MAPK pathways was enhanced in the fetal membrane of the P gingivalis group. Thus, in mice with chronic dental P gingivalis infection, TLR2-induced inflammation in the fetal membrane leads to upregulation of uterine contractility, leading to preterm birth.

Change history

References

  1. 1.

    Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151–2161.

    PubMed  Article  Google Scholar 

  2. 2.

    Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359(3):262–273.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes. In: Behrman RE, Butler AS, eds. Preterm Birth: Causes, Consequences, and Prevention. Washington, DC: National Academies Press (US); 2007.

    Google Scholar 

  4. 4.

    Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Wilson EC, Mathews TJ. Births: final data for 2010. Natl Vital Stat Rep. 2012;61(1):1–72.

    PubMed  Google Scholar 

  5. 5.

    Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Romero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukin-1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989;160(5 Pt 1):1117–1123.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Elovitz MA, Mrinalini C. Animal models of preterm birth. Trends Endocrinol Metab. 2004;15(10):479–487.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Fidel PL Jr, Romero R, Wolf N, et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol. 1994;170(5 Pt 1):1467–1475.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Nadeau-Vallee M, Quiniou C, Palacios J, et al. Novel noncompetitive IL-1 receptor-biased ligand prevents infection-and inflammation-induced preterm birth. J Immunol. 2015;195(7):3402–3415.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Wang H, Hirsch E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: the role of toll-like receptor 4. Biol Reprod. 2003;69(6):1957–1963.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Sadowsky DW, Novy MJ, Witkin SS, Gravett MG. Dexamethasone or interleukin-10 blocks interleukin-1beta-induced uterine contractions in pregnant rhesus monkeys. Am J Obstet Gynecol. 2003;188(1):252–263.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Pizzo G, Guiglia R, Lo Russo L, Campisi G. Dentistry and internal medicine: from the focal infection theory to the periodontal medicine concept. Eur J Intern Med. 2010;21(6):496–502.

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect. 2007;13(suppl 4):3–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Davenport ES, Williams CE, Sterne JA, Murad S, Sivapathasundram V, Curtis MA. Maternal periodontal disease and preterm low birthweight: case-control study. J Dent Res. 2002;81(5):313–318.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Hasegawa-Nakamura K, Tateishi F, Nakamura T, et al. The possible mechanism of preterm birth associated with periodontopathic Porphyromonas gingivalis. J Periodontal Res. 2011;46(4):497–504.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Offenbacher S, Katz V, Fertik G, et al. Periodontal infection as a possible risk factor for preterm low birth weight. J Periodontol. 1996;67(10):1103–1113.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Ao M, Miyauchi M, Furusho H, et al. Dental infection of Porphyromonas gingivalis induces preterm birth in mice. PLoS One. 2015;10(8): e0137249.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Miyoshi H, Konishi H, Teraoka Y, et al. Enhanced expression of contractile-associated proteins and ion channels in preterm delivery model mice with chronic odontogenic Porphyromonas gingivalis infection. Reprod Sci. 2016;23(7):838–846.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Challis JRG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514–550.

    CAS  PubMed  Google Scholar 

  21. 21.

    Miyoshi H, Yamaoka K, Urabe S, Kudo Y. ATP-induced currents carried through P2X7 receptor in rat myometrial cells. Reprod Sci. 2012;19(12):1285–1291.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Urabe S, Miyoshi H, Fujiwara H, Yamaoka K, Kudo Y. Enhanced expression of P2X4 and P2X7 purinergic receptors in the myometrium of pregnant rats in preterm delivery models. Reprod Sci. 2009;16(12):1186–1192.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Challis JR, Sloboda DM, Alfaidy N, et al. Prostaglandins and mechanisms of preterm birth. Reproduction. 2002;124(1):1–17.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Lien E, Means TK, Heine H, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000;105(4):497–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Furusho H, Miyauchi M, Hyogo H, et al. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. J Gastroenterol. 2013;48(11):1259–1270.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Kajioka S, Takahashi-Yanaga F, Shahab N, et al. Endogenous cardiac troponin T modulates Ca(2+)-mediated smooth muscle contraction. Sci Rep. 2012;2:979.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Mesiano S. Roles of estrogen and progesterone in human parturition. Front Horm Res. 2001;27:86–104.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Young IR. The comparative physiology of parturition in mammals. Front Horm Res. 2001;27:10–30.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Chang EY, Zhang J, Sullivan S, Newman R, Singh I. N-acetylcysteine prevents preterm birth by attenuating the LPS-induced expression of contractile associated proteins in an animal model. J Matern Fetal Neonatal Med. 2012;25(11):2395–2400.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Dudley DJ. Pre-term labor: an intra-uterine inflammatory response syndrome? J Reprod Immunol. 1997;36(1-2):93–109.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. 2009;23(7):947–954.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Okawa T, Suzuki H, Yanagida K, et al. Effect of lipopolysaccharide on uterine contractions and prostaglandin production in pregnant rats. Am J Obstet Gynecol. 2001;184(2):84–89.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Ross RG, Sathishkumar K, Naik AK, et al. Mechanisms of lipopolysaccharide-induced changes in effects of contractile agonists on pregnant rat myometrium. Am J Obstet Gynecol. 2004;190(2):532–540.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Hajishengallis G, Tapping RI, Harokopakis E, et al. Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern recognition apparatus. Cell Microbiol. 2006;8(10):1557–70.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Lindstrom TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction. 2005;130(5):569–581.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Shoji T, Yoshida S, Mitsunari M, et al. Involvement of p38 MAP kinase in lipopolysaccharide-induced production of pro-and anti-inflammatory cytokines and prostaglandin E2 in human choriodecidua. J Reprod Immunol. 2007;75(2):82–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Kim YM, Romero R, Chaiworapongsa T, et al. Toll-like receptor-2 and −4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am J Obstet Gynecol. 2004;191(4):1346–1355.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Michalowicz BS, Hodges JS, DiAngelis AJ, et al. Treatment of periodontal disease and the risk of preterm birth. N Engl J Med. 2006;355(18):1885–1894.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Polyzos NP, Polyzos IP, Zavos A, et al. Obstetric outcomes after treatment of periodontal disease during pregnancy: systematic review and meta-analysis. BMJ. 2010;341:c7017.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Xiong X, Buekens P, Goldenberg RL, Offenbacher S, Qian X. Optimal timing of periodontal disease treatment for prevention of adverse pregnancy outcomes: before or during pregnancy? Am J Obstet Gynecol. 2011;205:111–e1–6. doi:https://doi.org/10.1016/j.ajog.2011.03.017

    Article  Google Scholar 

  41. 41.

    Michalowicz BS, Gustafsson A, Thumbigere-Math V, Buhlin K. The effects of periodontal treatment on pregnancy outcomes. J Periodontol. 2013;84(4 Suppl):S195–S208. doi:https://doi.org/10.1902/jop.2013.1340014

    PubMed  Google Scholar 

  42. 42.

    Spivakovsky S. Periodontal treatment for the prevention of adverse birth outcomes. Evid Based Dent. 2018;19(1):12–13. doi:https://doi.org/10.1038/sj.ebd.6401286

    PubMed  Article  Google Scholar 

  43. 43.

    Leon R, Silva N, Ovalle A, et al. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J Periodontol. 2007;78(7):1249–1255.

    PubMed  Article  Google Scholar 

  44. 44.

    Ao M, Miyauchi M, Inubushi T, et al. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice. PLoS One. 2014;9(10):e110519.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Castro SA, Collighan R, Lambert PA, et al. Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils. Cell Death Dis. 2017;8(3):e2644.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shunichi Kajioka MD, DDS, PhD, DPhil.

Additional information

The original online version of this article was revised due to a retrospective Open Access order.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konishi, H., Urabe, S., Miyoshi, H. et al. Fetal Membrane Inflammation Induces Preterm Birth Via Toll-Like Receptor 2 in Mice With Chronic Gingivitis. Reprod. Sci. 26, 869–878 (2019). https://doi.org/10.1177/1933719118792097

Download citation

Keywords

  • inflammation-induced preterm birth
  • Porphyromonas gingivalis
  • toll-like receptor-2
  • uterine contractility