Skip to main content
Log in

Induction of Pyruvate Dehydrogenase Kinase 1 by Hypoxia Alters Cellular Metabolism and Inhibits Apoptosis in Endometriotic Stromal Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is a common gynecological disease, which is defined as the growth of endometrial tissues outside the uterine cavity. It often causes dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility in reproductive-age women. However, the pathogenesis of endometriosis remains largely unclear. Since our previous study revealed that ectopic endometriotic stromal cells experience greater hypoxic stress than their eutopic counterparts, we aim to investigate whether the metabolic properties are changed in the ectopic endometriotic stromal cell when compared to its eutopic counterpart. Here, we found the expression of pyruvate dehydrogenase kinase 1 (PDK1), a critical enzyme in regulating glucose metabolism, was increased in ectopic stromal cells. Molecular characterization reveals that overexpression of PDK1 is induced by hypoxia through transcriptional regulation. Upregulation of PDK1 in ectopic endometriotic stromal cells was accompanied by increases in lactate production and oxygen consumption rate when compared to eutopic endometrial stromal cells. Furthermore, our data showed that inhibition of PDK1 activity by treatment with dichloroacetate inhibits the lactate production and oxygen consumption rate of ectopic stromal cells. In addition, hypoxia-induced PDK1 expression prevented cells from H2 O2 — and low nutrient-induced cell death. These data indicate that ectopic endometriotic cells may adapt to hypoxic microenvironment via upregulating PDK1 and reprogramming metabolism, which provides a survival advantage in the hostile peritoneal microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am. 1997;24(2):235–258.

    CAS  PubMed  Google Scholar 

  3. Acien P, Velasco I. Endometriosis: a disease that remains enigmatic. ISRN Obstet Gynecol. 2013;2013:242149.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  5. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 1984;64(2):151–154.

    CAS  PubMed  Google Scholar 

  6. Wu MH, Chen KF, Lin SC, Lgu CW, Tsai SJ. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol. 2007;170(2):590–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsiao KY, Lin SC, Wu MH, Tsai SJ. Pathological functions of hypoxia in endometriosis. Front Biosci (Elite Ed). 2015;7:309–321.

    Google Scholar 

  8. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.

    Article  CAS  PubMed  Google Scholar 

  9. Young VJ, Brown JK, Maybin J, Saunders PT, Duncan WC, Horne AW. Transforming growth factor-beta induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab. 2014;99(9):3450–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu MH, Lin SC, Hsiao KY, Tsai SJ. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol. 2011;225(3):390–400.

    Article  CAS  PubMed  Google Scholar 

  11. Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metab. 2012;97(8):E1515–E1523.

    Article  CAS  PubMed  Google Scholar 

  12. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998;329 (pt 1):191–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gudi R, Bowker-Kinley MM, Kedishvili NY, Zhao Y, Popov KM. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem. 1995;270(48):28989–28994.

    Article  CAS  PubMed  Google Scholar 

  14. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 2008;283(42):28106–28114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu CW, Lin SC, Chien CW, et al. Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. Am J Pathol. 2011;179(3):1405–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–185.

    Article  PubMed  Google Scholar 

  17. Tsai SJ, Wu MH, Lin CC, Sun HS, Chen HM. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J Clin Endocrinol Metab. 2001;86(12):5765–5773.

    Article  CAS  PubMed  Google Scholar 

  18. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–197.

    Article  CAS  PubMed  Google Scholar 

  19. Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng. 2015;28:28–42.

    Article  CAS  PubMed  Google Scholar 

  20. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705–713.

    Article  CAS  PubMed  Google Scholar 

  21. Weljie AM, Jirik FR. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol. 2011;43(7):981–989.

    Article  CAS  PubMed  Google Scholar 

  22. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123(9):3685–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–19350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481(7381):380–384.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611–19616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shyh-Chang N, Zhu H, Yvanka de Soysa T, et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell. 2013;155(4):778–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Moura MB, Uppala R, Zhang Y, Van Houten B, Goetzman ES. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells. Plos One. 2014;9(8):e106028.

    Article  PubMed  Google Scholar 

  29. Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol. 2011;43(7):950–968.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner BA, Venkataraman S, Buettner GR. The rate of oxygen utilization by cells. Free Radic Biol Med. 2011;51(3):700–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigues MF, Obre E, de Melo FH, et al. Enhanced OXPHOS, glutaminolysis and beta-oxidation constitute the metastatic phenotype of melanoma cells. Biochem J. 2016;473(6):703–715.

    Article  CAS  PubMed  Google Scholar 

  32. Bonnet S, Archer SL, Allalunis-Turner J, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.

    Article  CAS  PubMed  Google Scholar 

  33. Choi YW, Lim IK. Sensitization of metformin-cytotoxicity by dichloroacetate via reprogramming glucose metabolism in cancer cells. Cancer Lett. 2014;346(2):300–308.

    Article  CAS  PubMed  Google Scholar 

  34. Stander XX, Stander BA, Joubert AM. Synergistic anticancer potential of dichloroacetate and estradiol analogue exerting their effect via ROS-JNK-Bcl-2-mediated signalling pathways. Cell Physiol Biochem. 2015;35(4):1499–1526.

    Article  CAS  PubMed  Google Scholar 

  35. Erkkila K, Aito H, Aalto K, Pentikainen V, Dunkel L. Lactate inhibits germ cell apoptosis in the human testis. Mol Hum Reprod. 2002;8(2):109–117.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaw-Jenq Tsai PhD.

Additional information

Authors’ Note

H.-C. Lee and S.-C. Lin designed and performed experiments. M.-H. Wu and S.-J. Tsai conceived and coordinated the project. M.-H. Wu performed the clinical diseases evaluations. H.-C. Lee and S.-J. Tsai wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HC., Lin, SC., Wu, MH. et al. Induction of Pyruvate Dehydrogenase Kinase 1 by Hypoxia Alters Cellular Metabolism and Inhibits Apoptosis in Endometriotic Stromal Cells. Reprod. Sci. 26, 734–744 (2019). https://doi.org/10.1177/1933719118789513

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118789513

Keywords

Navigation