Skip to main content

Advertisement

Log in

Influence of the AT1 Receptor Antagonists Telmisartan and Losartan on Reproduction and Offspring After Paternal Exposure to Ionizing Radiation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study evaluated the repercussions of paternal exposure to radiation on reproduction and offspring in rats, as well as whether treatment with the angiotensin II type 1 (AT1) receptor antagonists telmisartan and losartan has a mitigating effect. Rats were randomly divided into 6 groups: control, radiation, telmisartan, losartan, radiation + telmisartan, and radiation + losartan. A single 5 Gy dose of radiation was administered directly into the scrotum, followed by treatment with telmisartan (12 mg/kg/d) or losartan (34 mg/kg/2 times per day) for 60 days in the groups receiving these medications. The reproductive ability of the test animals was assessed before and after exposure to radiation via fertility tests. The resulting offspring were analyzed for the presence of external and internal anomalies. Ionizing radiation significantly affected the rates of fertility, pre- and postimplantation losses, and implantation. Telmisartan and losartan did not significantly prevent this radiation-induced damage. The frequency of fetal anomalies was similar in offspring produced before and after paternal radiation exposure. Moreover, irradiated rats that received treatments and were able to generate offspring did not produce fetuses with morphological changes; this may represent a possible radioprotective effect AT1 antagonists have on offspring development, although few fetuses survived and were evaluated for malformations. Although the study findings indicate that these medications have a positive effect, further studies with longer treatment periods (extending beyond 1 rat spermatogenic cycle) are needed to determine whether these drugs significantly improve reproductive rates after paternal exposure to radiation, which may also reflect an increase in the number of viable fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100(5):1180–1186.

    CAS  PubMed  Google Scholar 

  2. Brasil. Ministério da Saúde. Instituto Nacional do Câncer José Alencar Gomes da Silva INCA. Tratamento do câncer [Internet]. Rio de Janeiro (SP): Ministério da Saúde; [c1996-2018]. [cited 14 jun 2018]. http://www2.inca.gov.br/wps/wcm/connect/cancer/site/tratamento/

  3. Vakalopoulos I, Dimou P, Anaqnostou I, Zeginiadou T. Impact of cancer and cancer treatment on male fertility. Hormones (Athens). 2015;14(4):579–589.

    Google Scholar 

  4. Nair CK, Parida DK, Nomura T. Radioprotectors in radiotherapy. J Radiat Res. 2001;42(1):21–37.

    CAS  PubMed  Google Scholar 

  5. Nouailhetas Y, organizador. Radiações ionizantes e a vida: apostila educativa. Rio de Janeiro (RJ): Comissão Nacional de Energia Nuclear — CNEN; [c2015]. [cited14 jun 2018]. Available in: http://www.cnen.gov.br/images/cnen/documentos/educativo/radiacoes-ionizantes.pdf

  6. Massachusetts Institute of Technology. Principles of Radiation Interactions — Effects of radiation on DNA [Internet]. Cambridge (MA): Massachusetts Institute of Technology; [c2001–2018]. [cited 14 jun 2018]. Available in: http://ocw.mit.edu/courses/nuclear-engineering/22-55j-principles-of-radiation-interactions-fall-2004/lecture-notes/ef_of_rad_on_dna.pdf

  7. Walczak-Jedryowska R, Wolski JK, Slowikowska-Hilczen J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol. 2013;66(1):60–67.

    Google Scholar 

  8. Ping P, Gu B, Li P, Huang L, Li Z. Fertility outcome of patients with testicular tumor: before and after treatment. Asian J Androl. 2014;16(1):107–111.

    PubMed  Google Scholar 

  9. Yamashiro H, Abe Y, Fukuda T, et al. Effects of radioactive caesium on bull testes after the Fukushima nuclear plant accident. Sci Rep. 2013;3(2850):1–6.

    Google Scholar 

  10. Arnon J, Meirow D, Lewis-Roness H, Ornoy A. Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum Reprod Update. 2001;7(4):394–403. PMID: 11476352.

    CAS  PubMed  Google Scholar 

  11. Nefyodova I, Nefyodov I. Hereditary radiation effects in offspring of the second and third generations after irradiation of both grandparents experimental studies and hereditary radiation effects in offspring of the first generation after irradiation of one and both parents experimental studies. In: Proceedings of the 10th International Congress of the International Radiation Protection Association on Harmonization of Radiation, Human Life and the Ecosystem [Internet]. Japan: Japan Health Physics Society; 2000. [cited 2018 June 14]. http://www.irpa.net/irpa10/cdrom/00025.pdf

    Google Scholar 

  12. Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res. 2017;58(2):165–182.

    CAS  PubMed  Google Scholar 

  13. Aitken J, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008;1(1):15–24.

    PubMed  PubMed Central  Google Scholar 

  14. Salimi M, Mozdarani H, Nazari E. Cytogenetic alterations in preimplantation mice embryos following male mouse gonadal gamma-irradiation: comparison of two methods for reproductive toxicity screening. Avicenna J Med Biotech 2014;6(3):130–139. PMID: 25215176.

    Google Scholar 

  15. Nomura T. Transgenerational effects of radiation and chemicals in mice and human. J Radiat Res. 2006;47(suppl B):83–97. PMID: 17019056.

    Google Scholar 

  16. Gomes AM, Barber RC, Dubrova YE. Paternal irradiation perturbs the expression of circadian genes in offspring. Mutat Res. 2015;775:33–37.

    CAS  PubMed  Google Scholar 

  17. Mughal SK, Myazin AE, Zhavoronhov LP, Rubanovich AV, Dubrova YE. The dose and dose-rate effects off paternal irradiation on transgenerational instability in mice: a radiotherapy connection. PLoS One. 2012;7(7):1–5.

    Google Scholar 

  18. Robbins ME, Diz DI. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys. 2006;64(1):6–12.

    CAS  PubMed  Google Scholar 

  19. Kharofa J, Cohen EP, Tomic R, Xiang Q, Gore E. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys. 2012;84(1):238–243.

    CAS  PubMed  Google Scholar 

  20. Moulder JE, Fish BL, Cohen EF. Angiotensin II receptor antagonists in treatment and prevention of radiation nephropathy. Int J Radiat Biol. 1998;73(4):415–421. PMID: 8677292.

    CAS  PubMed  Google Scholar 

  21. Pan PP, Zhan QT, Le F, Zheng YM, Jin F. Angiotensin-converting enzymes play a dominant role in fertility. Int J Mol Sci. 2013;14(10):2171–2186.

    Google Scholar 

  22. Kim JH, Brown SL, Kolozsvary A, et al. Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res. 2004;161(2):137–142.

    CAS  PubMed  Google Scholar 

  23. Mollnau H, Wendt M, Szöcs K, et al. Effects of angiotensin II infusion on the expression and function of NADPH oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90(4):58–65.

    Google Scholar 

  24. Medhora M, Gao F, Jacobs ER, Moulder JE. Radiation damage to the lung: mitigation by angiotensin converting enzyme ACE inhibitors. Respirology. 2012;17(1):66–71.

    PubMed  PubMed Central  Google Scholar 

  25. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol. 2002;62(4A):609–614.

    CAS  PubMed  Google Scholar 

  26. Struck MB, Andruts KA, Ramirez HE, Battles AH. Effect of a short-term fast on ketamine-xylazine anesthesia in rats. J Am Assoc Lab Anim Sci. 2011;50(3):344–348. PMID: 21640029.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JS, Heo K, Yi JM, et al. Genistein mitigates radiation-induced testicular injury. Phytother Res. 2012;26(8):1119–1125.

    CAS  PubMed  Google Scholar 

  28. Koontz BF, Bossi A, Cozzarini C, Wiegel T, D’Amico A. A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol. 2015;68(4): 683–691.

    PubMed  Google Scholar 

  29. Cury FLB, Souhami L. Hypofractionated radiotherapy in the management of prostatic cancer. Rev Bras Cancer. 2004;50(3):239–249.

    Google Scholar 

  30. Kushwaha S, Jena GB. Telmisartan ameliorates germ cell toxicity in the STZ-induced diabetic rat: studies on possible molecular mechanisms. Mutat Res. 2013;755(1):11–23.

    CAS  PubMed  Google Scholar 

  31. Damasceno DC, Kempinas WG, Volpato GT, Consonni M, Rudge MVC, Paumgartten FJR. Anomalias Congênitas: Estudos Experimentais. Minas Gerais, Brazil: Coopmed Editora Médica; 2008:102.

    Google Scholar 

  32. Salewski E. Farbenmethode zum makroskopischen nachweis von implantations stellen na uterus der ratte. Naunyn-Schmiedebergs Arch für experimentelle Pathologie und Pharmakologie. 1964; 247(4):367–367.

    Google Scholar 

  33. Wilson JG. Methods for administering agents and detecting malformations in experimental animals. In: Wilson JG, Warkani J, eds. Teratology: Principles and Techniques. Chicago, IL: University of Chicago Press; 1965:262–277.

    Google Scholar 

  34. Staples RE, Schnell VL. Refinements in rapid clearing technic in the KOH-alizarin red S method for fetal bone. Stain Technol. 1964;39:61–63.

    CAS  PubMed  Google Scholar 

  35. Mansano NS, Jorge IF, Chies AB, Viani GA, Spadella MA. Effects of telmisartan and losartan on irradiated testes. Life Sci. 2018;194:157–167.

    CAS  Google Scholar 

  36. Müller WV, Streffer C, Wojcik A, Niedereichholz F. Radiation-induced malformation after exposure of murine germ cells in various stages of spermatogenesis. Mutat Res. 1999;425(1):99–106.

    PubMed  Google Scholar 

  37. Kim JH, Kim H, Kim YH, Chung WS, Suh JK, Kim SJ. Antioxidant effect of captopril and enalapril on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta. Korean J Thorac Cardiovasc Surg. 2013;46(1):14–21.

    PubMed  PubMed Central  Google Scholar 

  38. Ghosh SN, Zhang R, Fish BL, et al. Renin-angiotensin system suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2009;75(5):1528–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Leung PS, Sernia C. The renin-angiotensin system and male reproduction: new functions for old hormones. J Mol Endocrinol. 2003;30(3):263–270.

    CAS  PubMed  Google Scholar 

  40. Schwarz FC, Mansano NS, Chies AB, Viani GA, Spadella MA. Potential radioprotective effect of AT1 receptor antagonists against morphological and ultrastructural changes in the testes induced by ionizing radiation. Int J Morphol. 2017;35(3):840–850.

    Google Scholar 

  41. Little MP, Goodhead DT, Bridges BA, Bouffler SD. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents. Mutat Res. 2013;753(1):50–67.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angélica Spadella PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vale, A.P.C., dos Santos, G., da Silva, T.P. et al. Influence of the AT1 Receptor Antagonists Telmisartan and Losartan on Reproduction and Offspring After Paternal Exposure to Ionizing Radiation. Reprod. Sci. 26, 639–648 (2019). https://doi.org/10.1177/1933719118783251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118783251

Keywords

Navigation