Skip to main content

Advertisement

Log in

Antenatal Synthetic Glucocorticoid Exposure at Human Therapeutic Equivalent Doses Predisposes Middle-Age Male Offspring Baboons to an Obese Phenotype That Emerges With Aging

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Women threatening premature delivery receive synthetic glucocorticoids (sGC) to accelerate fetal lung maturation, reducing neonatal mortality and morbidity. Few investigations have explored potential long-term offspring side effects. We previously reported increased pericardial fat and liver lipids in 10-year-old (human equivalent 40 years) male baboons exposed to 3 antenatal sGC courses. We hypothesized middle-aged sGC male offspring show obesity-related morphometric changes.

Methods

Pregnant baboons received courses of 2 betamethasone injections (175 μg·kg−1 ·d−1 intramuscular) at 0.6, 0.64, and 0.68 gestation. At 10 to 12.5 years, we measured morphometrics and serum lipids in 5 sGC-exposed males and 10 age-matched controls. We determined whether morphometric parameters predicted amount of pericardial fat or lipids. Life-course serum lipids were measured in 25 males (7-23 years) providing normal regression formulas to compare sGC baboons’ lipid biological and chronological age.

Results

Birth weights were similar. When studied, sGC-exposed males showed a steeper weight increase from 8 to 12 years and had increased waist and hip circumferences, neck and triceps skinfolds, and total and low-density lipoprotein cholesterol. Triceps skinfold correlated with apical and midventricular pericardial fat thickness, hip and waist circumferences with insulin.

Conclusions

Triceps skinfold and waist and hip circumferences are useful biomarkers for identifying individuals at risk for obesity and metabolic dysregulation following fetal sGC exposure. Prenatal sGC exposure predisposes male offspring to internal adiposity, greater body size, and increased serum lipids. Results provide further evidence for developmental programming by fetal sGC exposure and call attention to potential emergence of adverse life-course effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists. Committee opinion no. 677 summary: Antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2016;128(4):940–941.

    Article  CAS  Google Scholar 

  2. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454.

  3. Audette MC, Challis JRG, Jones RL, Sibley CP, Matthews SG. Synthetic glucocorticoid reduces human placental system a transport in women treated with antenatal therapy. J Clin Endocrinol Metab. 2014;99(11):E2226–E2233.

    Article  CAS  PubMed  Google Scholar 

  4. Kuo AH, Li J, Li C, et al. Prenatal steroid administration leads to adult pericardial and hepatic steatosis in male baboons. Int J Obes. 2017;41(8):1299–1302.

    Article  CAS  Google Scholar 

  5. Seckl JR. Glucocorticoids, developmental “programming” and the risk of affective dysfunction. Prog Brain Res. 2008;167:17–34.

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher AJ, McGarrigle HH, Edwards CM, Fowden AL, Giussani DA. Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol. 2002;545(pt 2):649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo ZC, Xiao L, Nuyt AM. Mechanisms of developmental programming of the metabolic syndrome and related disorders. World J Diabetes. 2010;1(3):89–98.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Crudo A, Petropoulos S, Suderman M, et al. Effects of antenatal synthetic glucocorticoid on glucocorticoid receptor binding, DNA methylation, and genome-wide mRNA levels in the fetal male hippocampus. Endocrinology. 2013;154(11):4170–4181.

    Article  CAS  PubMed  Google Scholar 

  9. Luo ZC, Fraser WD, Julien P, et al. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses. 2006;66(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  10. Cianfarani S. Foetal origins of adult diseases: just a matter of stem cell number? Med Hypotheses. 2003;61(3):401–404.

    Article  CAS  PubMed  Google Scholar 

  11. Schlabritz-Loutsevitch NE, Lopez-Alvarenga JC, Comuzzie AG, et al. The prolonged effect of repeated maternal glucocorticoid exposure on the maternal and fetal leptin/insulin-like growth factor axis in Papio species. Reprod Sci. 2009;16(3):308–319.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez JS, Zürcher NR, Keenan KE, Bartlett TQ, Nathanielsz PW, Nijland MJ. Prenatal betamethasone exposure has sex specific effects in reversal learning and attention in juvenile baboons. Am J Obstet Gynecol. 2011;204(6):545.e1–545.e10.

    Article  CAS  Google Scholar 

  13. Koenen SV, Mecenas CA, Smith GS, Jenkins S, Nathanielsz PW. Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am J Obstet Gynecol. 2002;186(4):812–817.

    Article  CAS  PubMed  Google Scholar 

  14. Blanco CL, Moreira AG, McGill-Vargas LL, Anzueto DG, Nathanielsz P, Musi N. Antenatal corticosteroids alter insulin signaling pathways in fetal baboon skeletal muscle. J Endocrinol. 2014;221(2):253–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antonow-Schlorke I, Schwab M, Li C, Nathanielsz PW. Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J Physiol. 2003;547(1):117–123.

    Article  CAS  PubMed  Google Scholar 

  16. Dahlgren J, Nilsson C, Jennische E, et al. Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol Endocrinol Metab. 2001;281(2):E326–E334.

    Article  CAS  PubMed  Google Scholar 

  17. Drake AJ, Raubenheimer PJ, Kerrigan D, McInnes KJ, Seckl JR, Walker BR. Prenatal dexamethasone programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not obesity on a high-fat diet. Endocrinology. 2010;151(4):1581–1587.

    Article  CAS  PubMed  Google Scholar 

  18. Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clinical Investigat. 1998;101(10):2174.

    Article  CAS  Google Scholar 

  19. Cleasby ME, Livingstone DEW, Nyirenda MJ, Seckl JR, Walker BR. Is programming of glucocorticoid receptor expression by prenatal dexamethasone in the rat secondary to metabolic derangement in adulthood? Eur J Endocrinol. 2003;148(1):129–138.

    Article  CAS  PubMed  Google Scholar 

  20. Long NM, Shasa DR, Ford SP, Nathanielsz PW. Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids. Am J Obstet Gynecol. 2012;207(3):203.e1–203.e8.

    Article  CAS  Google Scholar 

  21. Berry MJ, Jaquiery AL, Oliver MH, Harding JE, Bloomfield FH. Antenatal corticosteroid exposure at term increases adult adiposity: an experimental study in sheep. Acta Obstet Gynecol Scand. 2013;92(7):862–865.

    Article  PubMed  CAS  Google Scholar 

  22. Long NM, Smith DT, Ford SP, Nathanielsz PW. Elevated glucocorticoids during ovine pregnancy increase appetite and produce glucose dysregulation and adiposity in their granddaughters in response to ad libitum feeding at 1 year of age. Am J Obstet Gynecol. 2013;209(4):353.e1–353.e9.

    Article  CAS  Google Scholar 

  23. de Vries A, Holmes MC, Heijnis A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest. 2007;117(4):1058–1067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dalziel SR, Walker NK, Parag V, et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005;365(9474):1856–1862.

    Article  CAS  PubMed  Google Scholar 

  25. Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999–2000. JAMA. 2002;288(14):1723–1727.

    Article  PubMed  Google Scholar 

  26. Williamson DF. Descriptive epidemiology of body weight and weight change in U.S. adults. Ann Intern Med. 1993;119(7 pt 2):646–649.

    Article  CAS  PubMed  Google Scholar 

  27. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief. 2013;(131):1–8.

    Google Scholar 

  28. Bronikowski AM, Alberts SC, Altmann J, Packer C, Carey KD, Tatar M. The aging baboon: comparative demography in a non-human primate. PNAS. 2002;99(14):9591–9595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coelho AM. Baboon dimorphism: growth in weight, length and adiposity from birth to 8 years of age. In: Watts ES, ed. Nonhuman Primate Models for Human Growth and Development. New York, NY: Alan R. Liss; 1985:125–159.

    Google Scholar 

  30. Mahaney MC, Leland MM, Williams-Blangero S, Marinez YN. Cross-sectional growth standards for captive baboons: II. Organ weight by body weight. J Med Primatol. 1993;22(7–8):415–427.

    Article  CAS  PubMed  Google Scholar 

  31. Leigh SR. Growth and development of baboons. In: VandeBerg JL, Williams-Blangero S, Tardif SD, eds. The Baboon in Biomedical Research. New York, NY: Developments in Primatology: Progress and Prospects. Springer; 2009:57–88.

    Chapter  Google Scholar 

  32. Saydah S, Bullard KM, Chen Y, et al. Trends in Cardiovascular Disease Risk Factors by Obesity Level in Adults in the United States, NHANES 1999–2010. Obesity (Silver Spring). 2014;22(8):1888–1895.

    Article  CAS  Google Scholar 

  33. Thompson D, Edelsberg J, Colditz GA, Bird AP, Oster G. Lifetime health and economic consequences of obesity. Arch Intern Med. 1999;159(18):2177–2183.

    Article  CAS  PubMed  Google Scholar 

  34. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97.

    Article  CAS  PubMed  Google Scholar 

  35. Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21(3):681–689.

    Article  CAS  PubMed  Google Scholar 

  36. Sarría A, Moreno LA, García-Llop LA, Fleta J, Morellón MP, Bueno M. Body mass index, triceps skinfold and waist circumference in screening for adiposity in male children and adolescents. Acta Paediatr. 2001;90(4):387–392.

    Article  PubMed  Google Scholar 

  37. Nooyens ACJ, Koppes LLJ, Visscher TLS, et al. Adolescent skinfold thickness is a better predictor of high body fatness in adults than is body mass index: the Amsterdam Growth and Health Longitudinal Study. Am J Clin Nutr. 2007;85(6):1533–1539.

    Article  CAS  PubMed  Google Scholar 

  38. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of childhood BMI to adult adiposity: the Bogalusa Heart Study. Pediatrics. 2005;115(1):22–27.

    Article  PubMed  Google Scholar 

  39. Dalton M, Cameron AJ, Zimmet PZ, et al. Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J Intern Med. 2003;254(6):555–563.

    Article  CAS  PubMed  Google Scholar 

  40. Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr. 2000;72(2):490–495.

    Article  CAS  PubMed  Google Scholar 

  41. Murphy VE, Zakar T, Smith R, Giles WB, Gibson PG, Clifton VL. Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J Clin Endocrinol Metab. 2002;87(4):1660–1668.

    CAS  PubMed  Google Scholar 

  42. Mercado AB, Wilson RC, Cheng KC, Wei JQ, New MI. Prenatal treatment and diagnosis of congenital adrenal hyperplasia owing to steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1995;80(7):2014–2020.

    CAS  PubMed  Google Scholar 

  43. Kuo AH, Li C, Li J, Huber HF, Nathanielsz PW, Clarke GD. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing. J Physiol. 2017;595(4):1093–1110.

    Article  CAS  PubMed  Google Scholar 

  44. Kuo AH, Li C, Huber HF, Schwab M, Nathanielsz PW, Clarke GD. Maternal nutrient restriction during pregnancy and lactation leads to impaired right ventricular function in young adult baboons. J Physiol. 2017;595(13):4245–4260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuo AH, Li J, Li C, Huber HF, Nathanielsz PW, Clarke GD. Poor perinatal growth impairs baboon aortic windkessel function. J Dev Orig Health Dis. 2018;9(2):137–142.

    Article  CAS  PubMed  Google Scholar 

  46. Dunn E, Kapoor A, Leen J, Matthews SG. Prenatal synthetic glucocorticoid exposure alters hypothalamic-pituitary-adrenal regulation and pregnancy outcomes in mature female guinea pigs. J Physiol. 2010;588(pt 5):887–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kapoor A, Dunn E, Kostaki A, Andrews MH, Matthews SG. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J Physiol. 2006;572(pt 1):31–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zambrano E, Nathanielsz PW. Mechanisms by which maternal obesity programs offspring for obesity: evidence from animal studies. Nutr Rev. 2013;71(suppl 1):S42–S54.

    Article  PubMed  Google Scholar 

  49. Plavcan JM. Sexual dimorphism in primate evolution. Am J Phys Anthropol. 2001;116(S33):25–53.

    Article  Google Scholar 

  50. Higham JP, MacLarnon AM, Ross C, Heistermann M, Semple S. Baboon sexual swellings: information content of size and color. Horm Behav. 2008;53(3):452–462.

    Article  PubMed  Google Scholar 

  51. Asztalos EV, Murphy KE, Willan AR, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5). JAMA Pediatr. 2013;167(12):1102–1110.

    PubMed  Google Scholar 

  52. Gyamfi-Bannerman C, Thom EA, Blackwell SC, et al. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016;374(14):1311–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wapner RJ. Antenatal corticosteroids for periviable birth. Semin Perinatol. 2013;37(6):410–413.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Nathanielsz MD, PhD, ScD.

Additional information

Authors’ Note

This work was performed at the institution Southwest National Primate Research Center and Texas Biomedical Research Institute, San Antonio, TX. Animal welfare legal compliance: United States Animal Welfare Act.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, H.F., Kuo, A.H., Li, C. et al. Antenatal Synthetic Glucocorticoid Exposure at Human Therapeutic Equivalent Doses Predisposes Middle-Age Male Offspring Baboons to an Obese Phenotype That Emerges With Aging. Reprod. Sci. 26, 591–599 (2019). https://doi.org/10.1177/1933719118778794

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118778794

Keywords

Navigation