Skip to main content
Log in

Roles of Progesterone Receptor Membrane Component 1 in Oxidative Stress—Induced Aging in Chorion Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Oxidative stress—mediated fetal membrane cell aging is activated prematurely in preterm premature rupture of membranes (PPROMs). The mechanism of this phenomenon is largely understudied. Progesterone receptor membrane component 1 (PGRMC1) has been recognized as a potential protective component for maintaining fetal membrane integrity and healthy pregnancies. We aimed to investigate the effects of oxidative stress (represented by hydrogen peroxide [H2O2]) on fetal membrane and chorion cell senescence, p38 mitogen-activated protein kinase (MAPK) phosphorylation, and sirtuin 3 (SIRT3) and to examine the roles of PGRMC1 in these effects.

Methods

Following serum starvation for 24 hours, full-thickness fetal membrane explants and primary chorion cells were treated with H2O2 at 100, 300, and 500 µM for 24 hours. Cells were fixed for cell senescence-associated β-galactosidase assay. Cell lysates were harvested for quantitive reverse transcription polymerase chain reaction to quantify SIRT3 messenger RNA. Cell lysates were harvested for Western blot to semi-quantify SIRT3 protein and p38 MAPK phosphorylation levels, respectively. To examine the role of PGRMC1, primary chorion cells underwent the same treatment mentioned above following PGRMC1 knockdown using validated PGRMC1-specific small-interfering RNA.

Results

Hydrogen peroxide significantly induced cell senescence and p38 MAPK phosphorylation, and it significantly decreased SIRT3 expression in full-thickness fetal membrane explants and chorion cells. These effects were enhanced by PGRMC1 knockdown.

Discussion

This study further demonstrated that oxidative stress—induced cell aging is one of the mechanisms of PPROM and PGRMC1 acts as a protective element for maintaining fetal membrane integrity by inhibiting oxidative stress—induced chorion cell aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fortner KB, Grotegut CA, Ransom CE, et al. Bacteria localization and chorion thinning among preterm premature rupture of membranes. PLoS One. 2014;9(1):e83338.

    PubMed  PubMed Central  Google Scholar 

  2. Canzoneri BJ, Feng L, Grotegut CA, Bentley RC, Heine RP, Murtha AP. The chorion layer of fetal membranes is prematurely destroyed in women with preterm premature rupture of the membranes. Reprod Sci. 2013;20(10):1246–1254.

    PubMed  Google Scholar 

  3. George RB, Kalich J, Yonish B, Murtha AP. Apoptosis in the chorion of fetal membranes in preterm premature rupture of membranes. Am J Perinatol. 2008;25(1):29–32.

    PubMed  Google Scholar 

  4. Menon R, Boldogh I, Hawkins HK, et al. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am J Pathol. 2014;184(6):1740–1751.

    CAS  PubMed  Google Scholar 

  5. Menon R, Yu J, Basanta-Henry P, et al. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS One. 2012;7(2):e31136.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Woods JR Jr. Reactive oxygen species and preterm premature rupture of membranes—a review. Placenta. 2001;22(suppl A):S38–S44.

    PubMed  Google Scholar 

  7. Kacerovsky M, Tothova L, Menon R, et al. Amniotic fluid markers of oxidative stress in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med, 2014:1–10.

  8. Ilhan N, Celik E, Kumbak B. Maternal plasma levels of interleukin-6, C-reactive protein, vitamins C, E and A, 8-isoprostane and oxidative status in women with preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(3):316–319.

    CAS  PubMed  Google Scholar 

  9. Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY). 2016;8(2):216–230.

    CAS  Google Scholar 

  10. Menon R, Fortunato SJ, Yu J, et al. Cigarette smoke induces oxidative stress and apoptosis in normal term fetal membranes. Placenta. 2011;32(4):317–322.

    CAS  PubMed  Google Scholar 

  11. Plessinger MA, Woods JR Jr, Miller RK. Pretreatment of human amnion-chorion with vitamins C and E prevents hypochlorous acid-induced damage. Am J Obstet Gynecol. 2000;183(4):979–985.

    CAS  PubMed  Google Scholar 

  12. Michaelis J, Vissers MC, Winterbourn CC. Different effects of hypochlorous acid on human neutrophil metalloproteinases: activation of collagenase and inactivation of collagenase and gelatinase. Arch Biochem Biophys. 1992;292(2):555–562.

    CAS  PubMed  Google Scholar 

  13. Buhimschi IA, Kramer WB, Buhimschi CS, Thompson LP, Weiner CP. Reduction-oxidation (redox) state regulation of matrix metalloproteinase activity in human fetal membranes. Am J Obstet Gynecol. 2000;182(2):458–464.

    CAS  PubMed  Google Scholar 

  14. Masumoto N, Tasaka K, Mizuki J, Miyake A, Tanizawa O. Regulation of intracellular Mg2+ by superoxide in amnion cells. Biochem Biophys Res Commun. 1992;182(2):906–912.

    CAS  PubMed  Google Scholar 

  15. Ikebuchi Y, Masumoto N, Tasaka K, et al. Superoxide anion increases intracellular pH, intracellular free calcium, and arachidonate release in human amnion cells. J Biol Chem. 1991;266(20):13233–13237.

    CAS  PubMed  Google Scholar 

  16. Menon R, Boldogh I, Urrabaz-Garza R, et al. Senescence of primary amniotic cells via oxidative DNA damage. PLoS One. 2013;8(12):e83416.

    PubMed  PubMed Central  Google Scholar 

  17. Menon R, Polettini J, Syed TA, Saade GR, Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am J Reprod Immunol. 2014;72(1):75–84.

    CAS  PubMed  Google Scholar 

  18. Polettini J, Behnia F, Taylor BD, Saade GR, Taylor RN, Menon R. Telomere fragment induced amnion cell senescence: a contributor to parturition? PLoS One. 2015;10(9):e0137188.

    PubMed  PubMed Central  Google Scholar 

  19. Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012:936486.

    PubMed  PubMed Central  Google Scholar 

  20. Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R. Reactive oxygen and nitrogen species generation, antioxidant defenses, and beta-cell function: a critical role for amino acids. J Endocrinol. 2012;214(1):11–20.

    CAS  PubMed  Google Scholar 

  21. Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30(8):1536–1548.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsieh CC, Kuro-o M, Rosenblatt KP, Brobey R, Papaconstantinou J. The ASK1-signalosome regulates p38 MAPK activity in response to levels of endogenous oxidative stress in the Klotho mouse models of aging. Aging (Albany NY). 2010;2(9):597–611.

    CAS  Google Scholar 

  23. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5(3):144–150.

    CAS  Google Scholar 

  24. Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest. 2013;123(3):973–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2- mediated p53 degradation. Biochem Biophys Res Commun. 2012;423(1):26–31.

    CAS  PubMed  Google Scholar 

  26. Lim R, Barker G, Menon R, Lappas M. A novel role for SIRT3 in regulating mediators involved in the terminal pathways of human labor and delivery. Biol Reprod. 2016;95(5):95.

    PubMed  PubMed Central  Google Scholar 

  27. Meng Y, Murtha AP, Feng L. Progesterone, inflammatory cytokine (TNF-alpha), and oxidative stress (H2O2) regulate progesterone receptor membrane component 1 expression in fetal membrane cells. Reprod Sci. 2016;23(9):1168–1178.

    CAS  PubMed  Google Scholar 

  28. Allen TK, Feng L, Grotegut CA, Murtha AP. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro. Reprod Sci. 2014;21(2):260–268.

    PubMed  PubMed Central  Google Scholar 

  29. Allen TK, Feng L, Nazzal M, Grotegut CA, Buhimschi IA, Murtha AP. The effect of progestins on tumor necrosis factor alpha-induced matrix metalloproteinase-9 activity and gene expression in human primary amnion and chorion cells in vitro. Anesth Analg. 2015;120(5):1085–1094.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hand RA, Craven RJ. Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells. J Cell Biochem. 2003;90(3):534–547.

    CAS  PubMed  Google Scholar 

  31. Peluso JJ. Multiplicity of progesterone’s actions and receptors in the mammalian ovary. Biol Reprod. 2006;75(1):2–8.

    CAS  PubMed  Google Scholar 

  32. Hughes AL, Powell DW, Bard M, et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 2007;5(2):143–149.

    CAS  PubMed  Google Scholar 

  33. Sun F, Nguyen T, Jin X, et al. Pgrmc1/BDNF signaling plays a critical role in mediating glia-neuron cross talk. Endocrinology. 2016;157(5):2067–2079.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zachariades E, Mparmpakas D, Pang Y, Rand-Weaver M, Thomas P, Karteris E. Changes in placental progesterone receptors in term and preterm labour. Placenta. 2012;33(5):367–372.

    CAS  PubMed  Google Scholar 

  35. Wang R, Sheehan PM, Brennecke SP. Changes in myometrial expression of progesterone receptor membrane components 1 and 2 are associated with human parturition at term. Reprod Fertil Dev. 2016;28(5):618–627.

    CAS  PubMed  Google Scholar 

  36. Wu W, Shi SQ, Huang HJ, Balducci J, Garfield RE. Changes in PGRMC1, a potential progesterone receptor, in human myometrium during pregnancy and labour at term and preterm. Mol Hum Reprod. 2011;17(4):233–242.

    CAS  PubMed  Google Scholar 

  37. Feng L, Antczak BC, Lan L, et al. Progesterone receptor membrane component 1 (PGRMC1) expression in fetal membranes among women with preterm premature rupture of the membranes (PPROM). Placenta. 2014;35(5):331–333.

    CAS  PubMed  Google Scholar 

  38. Clark NC, Pru CA, Yee SP, Lydon JP, Peluso JJ, Pru JK. Conditional ablation of progesterone receptor membrane component 2 causes female premature reproductive senescence. Endocrinology. 2017;158(3):640–651.

    CAS  PubMed  Google Scholar 

  39. Oyen ML, Calvin SE, Landers DV. Premature rupture of the fetal membranes: is the amnion the major determinant? Am J Obstet Gynecol. 2006;195(2):510–515.

    PubMed  Google Scholar 

  40. Uchide N, Ohyama K, Bessho T, Toyoda H. Induction of pro-inflammatory cytokine gene expression and apoptosis in human chorion cells of fetal membranes by influenza virus infection: possible implications for maintenance and interruption of pregnancy during infection. Med Sci Monit. 2005;11(1):RA7–A16.

    CAS  PubMed  Google Scholar 

  41. Murtha AP, Auten R, Herbert WN. Apoptosis in the chorion laeve of term patients with histologic chorioamnionitis. Infect Dis Obstet Gynecol. 2002;10(2):93–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones CW, Gambala C, Esteves KC, et al. Differences in placental telomere length suggest a link between racial disparities in birth outcomes and cellular aging. Am J Obstet Gynecol. 2017;216(3):294.e291–e298.

    Google Scholar 

  43. Gomez-Lopez N, Romero R, Plazyo O, et al. Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. Am J Obstet Gynecol. 2017;217(5):592.e1–e17.

    Google Scholar 

  44. Behnia F, Taylor BD, Woodson M, et al. Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol. 2015;213(3):359.e351–e316.

    Google Scholar 

  45. Kumar D, Lundgren DW, Moore RM, Silver RJ, Moore JJ. Hydrogen peroxide induced apoptosis in amnion-derived WISH cells is not inhibited by vitamin C. Placenta. 2004;25(4):266–272.

    CAS  PubMed  Google Scholar 

  46. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280(14):13560–13567.

    CAS  PubMed  Google Scholar 

  47. Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17(1):41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tatone C, Di Emidio G, Vitti M, et al. Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev. 2015;2015:659687.

    PubMed  PubMed Central  Google Scholar 

  49. Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143(5):802–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Boyle KE, Newsom SA, Janssen RC, Lappas M, Friedman JE. Skeletal muscle MnSOD, mitochondrial complex II, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus. J Clin Endocrinol Metab. 2013;98(10):E1601–E1609.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Feng MD.

Additional information

Authors’ Note

Liping Feng designed the study, performed experiments, analyzed and interpreted the data, and prepared the manuscript. Terrence Allen participated in the statistical analysis and contributed to the manuscript preparation. William Marinello performed some of the experiments. Amy Murtha contributed to the study design and participated in manuscript preparation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Allen, T.K., Marinello, W.P. et al. Roles of Progesterone Receptor Membrane Component 1 in Oxidative Stress—Induced Aging in Chorion Cells. Reprod. Sci. 26, 394–403 (2019). https://doi.org/10.1177/1933719118776790

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118776790

Keywords

Navigation