Skip to main content

Advertisement

Log in

Proteomic Analysis Identifies Tenascin-C Expression Is Upregulated in Uterine Fibroids

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine leiomyomas (fibroids) are the most common gynecological tumors, which are enriched in the extracellular matrix (ECM). Fibroids are leading cause of abnormal uterine bleeding and hysterectomy. One of the major questions yet to be answered is the overproduction of specific ECM components in human uterine fibroids, particularly in relation to mutations in the driver gene mediator complex subunit 12 (MED12). Surgical specimens from 14 patients with uterine leiomyoma having fibroids and corresponding adjacent normal myometrium (ANM) were utilized to analyze genetic and proteomic expression patterns in the tissue samples. MED12 mutations in the fibroids were screened by Sanger sequencing. iTRAQ was used to label the peptides in small-, medium-, and large-sized fibroid samples of annotated MED12 mutation from the same patient. The mixtures of the peptides were fractionated by hydrophilic interaction liquid chromatography (HILIC) and analyzed by liquid chromatography—tandem mass spectrometry (LC-MS/MS) to identify the differential expression proteins. Using isobaric tagged-based quantitative mass spectrometry on 3 selected patients, ECM-related protein tenascin-C (TNC) was observed significantly upregulated (>1.5-fold) with a confidence corresponding to false discovery rate (FDR) <1% in small-, medium-, and large-sized fibroid samples regardless of MED12 mutation status. The TNC was validated on additional patient samples using Western blotting (WB) and immunohistochemistry (IHC) and confirmed significant overexpression of this protein in fibroids compared to matched ANM. Proteomic analyses have identified the increased ECM protein expression, TNC, as a hallmark of uterine fibroids regardless of MED12 mutations. Further functional studies focusing on the upregulated ECM proteins in leiomyogenesis will lead to the identification of novel ECM drug targets for fibroid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–438.

    Article  CAS  PubMed  Google Scholar 

  2. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstetr Gynecol. 2003;188(1):100–107.

    Article  Google Scholar 

  3. Stewart EA, Laughlin-Tommaso SK, Catherino WH, Lalitkumar S, Gupta D, Vollenhoven B. Uterine fibroids. Nat Rev Dis Primers. 2016;2:16043.

    Article  PubMed  Google Scholar 

  4. Downes E, Sikirica V, Gilabert-Estelles J, et al. The burden of uterine fibroids in five European countries. Eur J Obstet Gynecol Reprod Biol. 2010;152(1):96–102.

    Article  PubMed  Google Scholar 

  5. Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Womens Health. 2012;12:6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coronado GD, Marshall LM, Schwartz SM. Complications in pregnancy, labor, and delivery with uterine leiomyomas: a population-based study. Obstet Gynecol. 2000;95(5):764–769.

    CAS  PubMed  Google Scholar 

  7. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstetr Gynecol. 2012;206(3):211.e211–e219.

    Article  Google Scholar 

  8. Sparic R, Mirkovic L, Malvasi A. Epidemiology of uterine myomas: a review. 2016;9(4):424–435.

    Google Scholar 

  9. Mehine M, Kaasinen E, Makinen N, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  10. Mehine M, Kaasinen E, Heinonen HR, et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci. 2016;113(5):1315–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makinen N, Mehine M, Tolvanen J, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–255.

    Article  PubMed  CAS  Google Scholar 

  12. Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol. 2015;50(5):393–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Taatjes DJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci. 2010;35(6):315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jamaluddin MFB, Ko Y-A, Kumar M, et al. Proteomic profiling of human uterine fibroids reveals upregulation of the extracellular matrix protein periostin. Endocrinology. 2018;159(2):1106–1118.

    Article  CAS  PubMed  Google Scholar 

  15. Malik M, Norian J, McCarthy-Keith D, Britten J, Catherino WH. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010;28(3):169–179.

    Article  PubMed  Google Scholar 

  16. Leppert PC. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. 2004;82(3):1182–1187.

    Google Scholar 

  17. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344–1355.

    Article  CAS  PubMed  Google Scholar 

  18. Leppert PC, Jayes FL, Segars JH. The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int. 2014;2014:783289.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–1011.

    Article  CAS  PubMed  Google Scholar 

  20. Arslan AA, Gold LI, Mittal K, et al. Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod. 2005;20(4):852–863.

    Article  CAS  PubMed  Google Scholar 

  21. Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstetr Gynecol. 2006;195(2):415–420.

    Article  CAS  Google Scholar 

  22. Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78(1):1–12.

    Article  PubMed  Google Scholar 

  23. Ko YA, Jamaluddin M, Adebayo M, et al. Extracellular matrix (ECM) activates beta-catenin signaling in uterine fibroids. Reproduction. 2018;155(1):61–71.

    CAS  PubMed  Google Scholar 

  24. Ono M, Yin P, Navarro A, et al. Paracrine activation of WNT/beta-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci USA. 2013;110(42):17053–17058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Norian JM, Malik M, Parker CY, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16(12):1153–1164.

    Article  CAS  PubMed  Google Scholar 

  26. Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med. 2015;21:242–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orend G. Potential oncogenic action of tenascin-C in tumorigenesis. Int J Biochem Cell Biol. 2005;37(5):1066–1083.

    Article  CAS  PubMed  Google Scholar 

  28. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cell Mol Life Sci. 2011;68(19):3175–3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, Al-Hendy A. Novel MED12 gene somatic mutations in women from the Southern United States with symptomatic uterine fibroids. Mol Genet Genomics. 2015;290(2):505–511.

    Article  CAS  PubMed  Google Scholar 

  30. Bajwa P, Nielsen S, Lombard JM, et al. Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice. Oncotarget. 2017;8(5):7265–7275.

    Article  PubMed  Google Scholar 

  31. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995;57(1):289–300.

    Google Scholar 

  32. Sandberg A, Branca RM, Lehtio J, Forshed J. Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference. J Proteomics. 2014;96:133–144.

    Article  CAS  PubMed  Google Scholar 

  33. Farquhar CM, Steiner CA. Hysterectomy rates in the United States 1990–1997. Obstetr Gynecol. 2002;99(2):229–234.

    Google Scholar 

  34. Malik M, Britten J, Segars J, Catherino WH. Leiomyoma cells in 3-dimensional cultures demonstrate an attenuated response to fasudil, a rho-kinase inhibitor, when compared to 2-dimensional cultures. Reprod Sci. 2014;21(9):1126–1138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Brunengraber LN, Jayes FL, Leppert PC. Injectable clostridium histolyticum collagenase as a potential treatment for uterine fibroids. Reprod Sci. 2014;21(12):1452–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Makinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2(12):966–969.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett. 2006;244(2):143–163.

    Article  CAS  PubMed  Google Scholar 

  38. Jones PL, Jones FS. Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol. 2000;19(7):581–596.

    Article  CAS  PubMed  Google Scholar 

  39. Imanaka-Yoshida K, Hiroe M, Yoshida T. Interaction between cell and extracellular matrix in heart disease: multiple roles of tenascin-C in tissue remodeling. Histol Histopathol. 2004;19(2):517–525.

    CAS  PubMed  Google Scholar 

  40. Imanaka-Yoshida K, Matsumoto K, Hara M, Sakakura T, Yoshida T. The dynamic expression of tenascin-C and tenascin-X during early heart development in the mouse. Differentiation. 2003;71(4–5):291–298.

    Article  CAS  PubMed  Google Scholar 

  41. Willems IE, Arends JW, Daemen MJ. Tenascin and fibronectin expression in healing human myocardial scars. J Pathol. 1996;179(3):321–325.

    Article  CAS  PubMed  Google Scholar 

  42. Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res. 2001;61(23):8586–8594.

    CAS  PubMed  Google Scholar 

  43. Martin D, Brown-Luedi M, Chiquet-Ehrismann R. Tenascin-C signaling through induction of 14-3-3 tau. J Cell Biol. 2003;160(2):171–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int J Cancer. 2002;98(3):362–369.

    Article  CAS  PubMed  Google Scholar 

  45. De Wever O, Nguyen QD, Van Hoorde L, et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. Faseb J. 2004;18(9):1016–1018.

    Article  PubMed  CAS  Google Scholar 

  46. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–558.

    Article  CAS  PubMed  Google Scholar 

  47. Venning FA, Wullkopf L, Erler JT. Targeting ECM disrupts cancer progression. Front Oncol. 2015;5:224.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4(8):657–665.

    Article  PubMed  CAS  Google Scholar 

  49. Oskarsson T, Acharyya S, Zhang XH, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17(7):867–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–776.

    Article  CAS  PubMed  Google Scholar 

  51. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  52. Chiovaro F, Martina E, Bottos A, Scherberich A, Hynes NE, Chiquet-Ehrismann R. Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells. Int J Cancer. 2015;137(8):1842–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep S. Tanwar PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamaluddin, M.F.B., Nagendra, P.B., Nahar, P. et al. Proteomic Analysis Identifies Tenascin-C Expression Is Upregulated in Uterine Fibroids. Reprod. Sci. 26, 476–486 (2019). https://doi.org/10.1177/1933719118773420

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118773420

Keywords

Navigation