Skip to main content

Advertisement

Log in

Effect of Sildenafil on Pulmonary Circulation and Cardiovascular Function in Near-Term Fetal Sheep During Hypoxemia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Sildenafil is a potential new treatment for placental insufficiency in human pregnancies as it reduces the breakdown of vasodilator nitric oxide. Pulmonary vasodilatation is observed in normoxemic fetuses following sildenafil administration. Placental insufficiency often leads to fetal hypoxemia that can cause pulmonary vasoconstriction and fetal cardiac dysfunction as evidenced by reduced isovolumic myocardial velocities. We tested the hypotheses that sildenafil, when given directly to the hypoxemic fetus, reverses reactive pulmonary vasoconstriction, increases left ventricular cardiac output by increasing pulmonary venous return, and ameliorates hypoxemic myocardial dysfunction. We used an instrumented sheep model. Fetuses were made hypoxemic over a mean (standard deviation) duration of 41.3 (9.5) minutes and then given intravenous sildenafil or saline infusion. Volume blood flow through ductus arteriosus was measured with an ultrasonic transit-time flow probe. Fetal left and right ventricular outputs and lung volume blood flow were calculated, and ventricular function was examined using echocardiography. Lung volume blood flow decreased and the ductus arteriosus volume blood flow increased with hypoxemia. There was a significant reduction in left ventricular and combined cardiac outputs during hypoxemia in both groups. Hypoxemia led to a reduction in myocardial isovolumic velocities, increased ductus venosus pulsatility, and reduced left ventricular myocardial deformation. Direct administration of sildenafil to hypoxemic fetus did not reverse the redistribution of cardiac output. Furthermore, fetal cardiac systolic and diastolic dysfunction was observed during hypoxemia, which was not improved by fetal sildenafil treatment. In conclusion, sildenafil did not improve pulmonary blood flow or cardiac function in hypoxemic sheep fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasanen J, Wood DC, Debbs RH, Cohen J, Weiner S, Huhta JC. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: a randomized study. Circulation. 1998;97(3):257–262.

    CAS  PubMed  Google Scholar 

  2. Rizzo G, Capponi A, Chaoui R, Taddei F, Arduini D, Romanini C. Blood flow velocity waveforms from peripheral pulmonary arteries in normally grown and growth-retarded fetuses. Ultrasound Obstet Gynecol. 1996;8(2):87–92.

    CAS  PubMed  Google Scholar 

  3. Makikallio K, Erkinaro T, Niemi N, et al. Fetal oxygenation and Doppler ultrasonography of cardiovascular hemodynamics in a chronic near-term sheep model. Am J Obstet Gynecol. 2006;194(2):542–550.

    PubMed  Google Scholar 

  4. Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol. 2016;594(5):1215–1230.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120(6):817–824.

    CAS  PubMed  Google Scholar 

  6. Nicolaides KH, Economides DL, Soothill PW. Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;161(4):996–1001.

    CAS  PubMed  Google Scholar 

  7. Acharya G, Pavlovic M, Ewing L, Nollmann D, Leshko J, Huhta JC. Comparison between pulsed-wave Doppler- and tissue Doppler-derived TEI indices in fetuses with and without congenital heart disease. Ultrasound Obstet Gynecol. 2008;31(4):406–411.

    CAS  PubMed  Google Scholar 

  8. Bhide A, Rasanen J, Huhta H, et al. Effect of hypoxemia on fetal ventricular deformation in a chronically instrumented sheep model. Ultrasound Med Biol. 2017;43(5):967–973.

    PubMed  Google Scholar 

  9. Bhide A, Vuolteenaho O, Haapsamo M, Erkinaro T, Rasanen J, Acharya G. Effect of hypoxemia with or without increased placental vascular resistance on fetal left and right ventricular myocardial performance index in chronically instrumented sheep. Ultrasound Med Biol. 2016;42(11):2589–2598.

    PubMed  Google Scholar 

  10. Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R245–R258.

    CAS  PubMed  Google Scholar 

  11. Wareing M. Oxygen sensitivity, potassium channels, and regulation of placental vascular tone. Microcirculation. 2014;21(1):58–66.

    CAS  PubMed  Google Scholar 

  12. Lin CS, Lin G, Xin ZC, Lue TF. Expression, distribution and regulation of phosphodiesterase 5. Curr Pharm Des. 2006;12(27):3439–3457.

    CAS  PubMed  Google Scholar 

  13. Oyston C, Stanley JL, Oliver MH, Bloomfield FH, Baker PN. Maternal administration of sildenafil citrate alters fetal and placental growth and fetal—placental vascular resistance in the growth-restricted ovine fetus. Hypertension. 2016;68(3):760–767.

    CAS  PubMed  Google Scholar 

  14. Jaillard S, Larrue B, Deruelle P, et al. Effects of phosphodiesterase 5 inhibitor on pulmonary vascular reactivity in the fetal lamb. Ann Thorac Surg. 2006;81(3):935–942.

    PubMed  Google Scholar 

  15. Hashima JN, Rogers V, Langley SM, et al. Fetal ventricular interactions and wall mechanics during ductus arteriosus occlusion in a sheep model. Ultrasound Med Biol. 2015;41(4):1020–1028.

    PubMed  PubMed Central  Google Scholar 

  16. Itani N, Skeffington KL, Beck C, Giussani DA. Sildenafil therapy for fetal cardiovascular dysfunction during hypoxic development: studies in the chick embryo. J Physiol. 2017;595(5):1563–1573.

    CAS  PubMed  Google Scholar 

  17. Anderson PA, Killam AP, Mainwaring RD, Oakeley AE. In utero right ventricular output in the fetal lamb: the effect of heart rate. J Physiol. 1987;387:297–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Acharya G, Rasanen J, Makikallio K, et al. Metabolic acidosis decreases fetal myocardial isovolumic velocities in a chronic sheep model of increased placental vascular resistance. Am J Physiol Heart Circ Physiol. 2008;294(1):H498–H504.

    CAS  PubMed  Google Scholar 

  19. Rasanen J, Wood DC, Weiner S, Ludomirski A, Huhta JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation. 1996;94(5):1068–1073.

    CAS  PubMed  Google Scholar 

  20. Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res. 1970;26(3):289–299.

    CAS  PubMed  Google Scholar 

  21. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837, 837a–837d.

    PubMed  Google Scholar 

  22. Miller SL, Loose JM, Jenkin G, Wallace EM. The effects of sildenafil citrate (Viagra) on uterine blood flow and well being in the intrauterine growth-restricted fetus. Am J Obstet Gynecol. 2009;200(1):102 e101–102 e107.

    Google Scholar 

  23. Giussani DA, Spencer JA, Moore PJ, Bennet L, Hanson MA. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993;461:431–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudolph AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res. 1985;57(6):811–821.

    CAS  PubMed  Google Scholar 

  25. Green LR, Homan J, White SE, Richardson BS. Cardiovascular and metabolic responses to intermittent umbilical cord occlusion in the preterm ovine fetus. J Soc Gynecol Investig. 1999;6(2):56–63.

    CAS  PubMed  Google Scholar 

  26. Fletcher AJ, Gardner DS, Edwards CM, Fowden AL, Giussani DA. Development of the ovine fetal cardiovascular defense to hypoxemia towards full term. Am J Physiol Heart Circ Physiol. 2006;291(6):H3023–H3034.

    CAS  PubMed  Google Scholar 

  27. Ochi H, Matsubara K, Kusanagi Y, Furutani K, Katayama T, Ito M. The influence of the maternal heart rate on the uterine artery pulsatility index in the pregnant ewe. Gynecol Obstet Invest. 1999;47(2):73–75.

    CAS  PubMed  Google Scholar 

  28. De Muylder X, Fouron JC, Bard H, Urfer FN. Changes in the systolic time intervals of the fetal heart after surgical manipulation of the fetus. Am J Obstet Gynecol. 1983;147(3):285–288.

    PubMed  Google Scholar 

  29. von Dadelszen P, Dwinnell S, Magee LA, et al. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG. 2011;118(5):624–628.

    Google Scholar 

  30. Bernard LS, Hashima JN, Hohimer AR, et al. Myocardial performance and its acute response to angiotensin II infusion in fetal sheep adapted to chronic anemia. Reprod Sci. 2012;19(2):173–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brett CM, Teitel DF, Heymann MA, Rudolph AM. The young lamb can increase cardiovascular performance during isoflurane anesthesia. Anesthesiology. 1989;71(5):751–756.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarnath Bhide PhD.

Additional information

Authors’ Contribution

AB contributed to acquisition, analysis or interpretation of data for the work, and drafting the manuscript; LA contributed to acquisition, analysis or interpretation of data for the work, and revising it critically for important intellectual content; JR and GA contributed to conception and design of the work, acquisition, analysis and interpretation of data for the work, and revising it critically for important intellectual content; HH, JJ, MK, TE, PO, and MH revised the manuscript critically for important intellectual content. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhide, A., Alanne, L., Rasanen, J. et al. Effect of Sildenafil on Pulmonary Circulation and Cardiovascular Function in Near-Term Fetal Sheep During Hypoxemia. Reprod. Sci. 26, 337–347 (2019). https://doi.org/10.1177/1933719118773412

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118773412

Keywords

Navigation