Skip to main content

Advertisement

Log in

Biofluid Metabolomics in Preterm Birth Research

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This article presents an account of the research carried out so far in the use of metabolomics to find biomarkers of preterm birth (PTB) in fetal, maternal, and newborn biofluids. Metabolomic studies have employed mainly nuclear magnetic resonance spectroscopy or mass spectrometry–based methodologies to analyze, on one hand, prenatal biofluids (amniotic fluid, maternal urine/ maternal blood, cervicovaginal fluid) to identify predictive biomarkers of PTB, and on the other hand, biofluids collected at or after birth (amniotic fluid, umbilical cord blood, newborn urine, and newborn blood, maternal blood, or breast milk) to assess and follow up the health status of PTB babies. Besides advancing on the biochemical knowledge of PTB metabolism mainly during the in utero period and at birth, the work carried out has also helped to identify important requirements related to experimental design and analytical protocol that need to be addressed, if translation of these biomarkers to the clinic is to be envisaged. An outlook of possible future developments for the translation of laboratory results to the clinic is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blencowe H, Cousens S, Chou D, et al; Born Too Soon Preterm Birth Action Group. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10(suppl 1):S2.

    Google Scholar 

  2. Howson CP, Kinney MV, McDougall L, Lawn JE; Born Too Soon Preterm Birth Action Group. Born too soon: preterm birth matters. Reprod Health. 2013;10(suppl 1):S1.

    Google Scholar 

  3. Gracie S, Pennell C, Ekman-Ordeberg G, et al; PREBIC “-Omics” Research Group. An integrated systems biology approach to the study of preterm birth using “omic” technology—a guideline for research. BMC Pregnancy Childbirth. 2011;11(1):71.

    PubMed  PubMed Central  Google Scholar 

  4. Law K, Han TL, Tong C, Baker P. Mass spectrometry-based proteomics for pre-eclampsia and preterm birth. Int J Mol Sci. 2015;16(5):10952–10985.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheikh IA, Ahmad E, Jamal MS, et al. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update. BMC Genomics. 2016;17(Suppl 9):759.

    PubMed  PubMed Central  Google Scholar 

  6. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tolstikov V. Metabolomics: bridging the gap between pharmaceutical development and population health. Metabolites. 2016; 6(3):20.

    PubMed Central  Google Scholar 

  8. Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn. 2008;8(5):617–633.

    CAS  PubMed  Google Scholar 

  9. Duarte IF, Diaz SO, Gil AM. NMR metabolomics of human blood and urine in disease research. J Pharm Biomed Anal. 2014;93: 17–26.

    CAS  PubMed  Google Scholar 

  10. Bingol K, Bruschweiler-Li L, Li D, Zhang B, Xie M, Bru¨schweiler R. Emerging new strategies for successful metabolite identification in metabolomics. Bioanalysis. 2016;8(6):557–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen T, He P, Tan Y, Xu D. Biomarker identification and pathway analysis of preeclampsia based on serum metabolomics. Biochem Biophys Res Commun. 2017;485(1):119–125.

    CAS  PubMed  Google Scholar 

  12. Virgiliou C, Gika HG, Witting M, et al. Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. J Proteome Res. 2017;16(2): 898–910.

    CAS  PubMed  Google Scholar 

  13. Diaz SO, Pinto J, Barros AS, et al. Newborn urinary metabolic signatures of prematurity and other disorders: a case control study. J Proteome Res. 2016;15(1):311–325.

    PubMed  Google Scholar 

  14. Law KP, Zhang H. The pathogenesis and pathophysiology of gestational diabetes mellitus: deductions from a three-part longitudinal metabolomics study in China. Clin Chim Acta. 2017;468: 60–70.

    CAS  PubMed  Google Scholar 

  15. Dunn WB, Brown M, Worton SA, et al. Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta. 2009;30(11):974–980.

    CAS  PubMed  Google Scholar 

  16. Kenny LC, Broadhurst DI, Dunn W, et al; Screening for Pregnancy Endpoints Consortium. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010;56(4):741–749.

    CAS  PubMed  Google Scholar 

  17. Dunn WB, Brown M, Worton SA, et al. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy. Metabolomics. 2012;8(4):579–597.

    CAS  Google Scholar 

  18. Pinto J, Maciel E, Melo TS, et al. Maternal plasma phospholipids are altered in trisomy 21 cases and prior to preeclampsia and preterm outcomes. Rapid Commun Mass Spectrom. 2014; 28(14):1635–1638.

    CAS  PubMed  Google Scholar 

  19. Austdal M, Skra°stad RB, Gundersen AS, Austgulen R, Iversen AC, Bathen TF. Metabolomic biomarkers in serum and urine in women with preeclampsia. PLoS One. 2014;9(3):e91923.

    Google Scholar 

  20. Graça G, Duarte IF, Barros AS, et al. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. J Proteome Res. 2010;9(11):6016–6024.

    PubMed  Google Scholar 

  21. Diaz SO, Barros AS, Goodfellow BJ, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. J Proteome Res. 2013;12(6):2946–2957.

    CAS  PubMed  Google Scholar 

  22. Graça G, Diaz SO, Pinto J, et al. Can biofluids metabolic profiling help to improve healthcare during pregnancy? Spectrosc Int J. 2012;27:515–523.

    Google Scholar 

  23. Sachse D, Sletner L, Mørkrid K, et al. Metabolic changes in urine during and after pregnancy in a large, multiethnic populationbased cohort study of gestational diabetes. PLoS One. 2012; 7(12):e52399.

    Google Scholar 

  24. Bentley-Lewis R, Huynh J, Xiong G, et al. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia. 2015;58(6):1329–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pinto J, Almeida LM, Martins AS, et al. Prediction of gestational diabetes through NMR metabolomics of maternal blood. J Proteome Res. 2015;14(6):2696–2706.

    CAS  PubMed  Google Scholar 

  26. Dessi` A, Atzori L, Noto A, et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J Matern Neonatal Med. 2011;24(suppl 2): 35–39.

    Google Scholar 

  27. Sanz-Cortés M, Carbajo RJ, Crispi F, et al. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation. PLoS One. 2013;8(12):e80121.

    Google Scholar 

  28. Barberini L, Noto A, Fattuoni C, et al. Urinary metabolomics (GC-MS) reveals that low and high birth weight infants share elevated inositol concentrations at birth. J Matern Neonatal Med. 2014;27(suppl 2):20–26.

    CAS  Google Scholar 

  29. Dessi` A, Marincola FC, Pattumelli MG, et al. Investigation of the 1H-NMR based urine metabolomic profiles of IUGR, LGA and AGA newborns on the first day of life. J Matern Neonatal Med. 2014;27(suppl 2):13–19.

    CAS  Google Scholar 

  30. Maitre L, Villanueva CM, Lewis MR, et al. Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study. BMC Med. 2016;14(1):177.

    PubMed  PubMed Central  Google Scholar 

  31. Constantinou M, Papakonstantinou E, Benaki D, et al. Application of nuclear magnetic resonance spectroscopy combined with principal component analysis in detecting inborn errors of metabolism using blood spots: a metabonomic approach. Anal Chim Acta. 2004;511(2):303–312.

    CAS  Google Scholar 

  32. Constantinou MA, Papakonstantinou E, Spraul M, et al. 1H NMR-based metabonomics for the diagnosis of inborn errors of metabolism in urine. Anal Chim Acta. 2005;542(2):169–177.

    CAS  Google Scholar 

  33. Dénes J, Szabo E, Robinette S, et al. Metabonomics of newborn screening dried blood spot samples: a novel approach in the screening and diagnostics of inborn errors of metabolism. Anal Chem. 2012;84(22):10113–10120.

    PubMed  Google Scholar 

  34. Sahoo S, Franzson L, Jonsson JJ, Thiele I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol Biosyst. 2012;8(10):2545–2558.

    CAS  PubMed  Google Scholar 

  35. Yang Q, Lin SS, Yang JT, Tang LJ, Yu RQ. Detection of inborn errors of metabolism utilizing GC-MS urinary metabolomics coupled with a modified orthogonal partial least squares discriminant analysis. Talanta. 2017;165:545–552.

    CAS  PubMed  Google Scholar 

  36. Beckonert O, Keun HC, Ebbels TMD, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–2703.

    CAS  PubMed  Google Scholar 

  37. Yi L, Dong N, Yun Y, et al. Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Anal Chim Acta. 2016;914:17–34.

    CAS  PubMed  Google Scholar 

  38. Romero R, Mazaki-Tovi S, Vaisbuch E, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Neonatal Med. 2010;23(12): 1344–1359.

    CAS  Google Scholar 

  39. Graça G, Goodfellow BJ, Barros AS, et al. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Mol Biosyst. 2012;8(4):1243–1254.

    PubMed  Google Scholar 

  40. Power KM, Sanchez-Galan JE, Luskey GW, Koski KG, Burns DH. Use of near-infrared spectroscopic analysis of second trimester amniotic fluid to assess preterm births. J Pregnancy. 2011; 2011:980985.

    Google Scholar 

  41. Graça G, Moreira AS, Correia AJV, et al. Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: a possible avenue for early diagnosis of prenatal disorders? Anal Chim Acta. 2013;764:24–31.

    PubMed  Google Scholar 

  42. Thorp JM, Rice MM, Harper M, et al. Advanced lipoprotein measures and recurrent preterm birth. Am J Obstet Gynecol. 2013;209(4):342.e1-342.e7.

    Google Scholar 

  43. Diaz SO, Pinto J, Graça G, et al. Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J Proteome Res. 2011;10(8):3732–3742.

    CAS  PubMed  Google Scholar 

  44. Maitre L, Fthenou E, Athersuch T, et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Med. 2014;12:110.

  45. Auray-Blais C, Raiche E, Gagnon R, Berthiaume M, Pasquier JC. Metabolomics and preterm birth: what biomarkers in cervicovaginal secretions are predictive of high-risk pregnant women? Int J Mass Spectrom. 2011;307(1-3):33–38.

    CAS  Google Scholar 

  46. Ghartey J, Bastek JA, Brown A, Anglim L, Elovitz M. Women with preterm birth have a distinct cervico-vaginal fluid. Am J Obstet Gynecol. 2015;212(6):775.e1-776.e12.

    Google Scholar 

  47. Thomas MM, Sulek K, McKenzie J, et al. Metabolite profile of cervicovaginal fluid from early pregnancy is not predictive of spontaneous preterm birth. Int J Mol Sci. 2015;16(11): 27741–27748.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Amabebe E, Reynolds S, Stern VL, et al. Identifying metabolite markers for preterm birth in cervicovaginal fluid by magnetic resonance spectroscopy. Metabolomics. 2016;12(4):67.

    Google Scholar 

  49. Amabebe E, Reynolds S, Stern V, Stafford G, Paley M, Anumba DOC. Cervicovaginal fluid acetate: a metabolite marker of preterm birth in symptomatic pregnant women. Front Med. 2016;3:48.

    Google Scholar 

  50. Stafford GP, Parker JL, Amabebe E, et al. Spontaneous preterm birth is associated with differential expression of vaginal metabolites by Lactobacilli-dominated microflora. Front Physiol. 2017;8:615.

    PubMed  PubMed Central  Google Scholar 

  51. Menon R, Jones J, Gunst PR, et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci. 2014;21(6): 791–803.

    PubMed  PubMed Central  Google Scholar 

  52. Baraldi E, Giordano G, Stocchero M, et al. Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS One. 2016; 11(10):e0164211.

    Google Scholar 

  53. Tea I, Le Gall G, Ku¨ster A, et al. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012;7(1):e29947.

    Google Scholar 

  54. Alexandre-Gouabau MC, Courant F, Moyon T, et al. Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in verylow birth weight infants. J Proteome Res. 2013;12(6):2764–2778.

    CAS  PubMed  Google Scholar 

  55. Foxall PJ, Bewley S, Neild GH, Rodeck CH, Nicholson JK. Analysis of fetal and neonatal urine using proton nuclear magnetic resonance spectroscopy. Arch Dis Child. 1995;73(3):F153–F157.

    CAS  Google Scholar 

  56. Trump S, Laudi S, Unruh N, Goelz R, Leibfritz D. 1H-NMR metabolic profiling of human neonatal urine. Magn Reson Mater Phy. 2006;19(6):305–312.

    CAS  Google Scholar 

  57. Atzori L, Antonnucci R, Barberini L, et al. 1H NMR-based metabolomic analysis from preterm and term neonates. Front Biosci. 2011;3:1005–1012.

    Google Scholar 

  58. Moltu SJ, Sachse D, Blakstad EW, et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients. 2014;6(5):1913–30.

    PubMed  PubMed Central  Google Scholar 

  59. Wilson K, Hawken S, Ducharme R, et al. Metabolomics of prematurity: analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age. Pediatr Res. 2014; 75(2):367–373.

    CAS  PubMed  Google Scholar 

  60. Wilson K, Hawken S, Murphy MSQ, et al. Postnatal prediction of gestational age using newborn fetal hemoglobin levels. EBioMedicine. 2016;15:203–209.

    PubMed  PubMed Central  Google Scholar 

  61. Wilson K, Hawken S, Potter BK, et al. Accurate prediction of gestational age using newborn screening analyte data. Am J Obstet Gynecol. 2016;214(4):513.e1-513.e9.

    Google Scholar 

  62. Liu J, Chen JJ, Li XW, Fu W, Zhang WQ. Metabolomic research on newborns infants with intrauterine growth restriction. Medicine( Baltimore). 2016;95(17):e3564.

    Google Scholar 

  63. Jelliffe-Pawlowski LL, Norton ME, Baer RJ, Santos N, Rutherford GW. Gestational dating by metabolic profile at birth: a California cohort study. Am J Obstet Gynecol. 2016;214(4):511.e1-511.e13.

    Google Scholar 

  64. Ryckman KK, Berberich SL, Dagle JM. Predicting gestational age using neonatal metabolic markers. Am J Obstet Gynecol. 2016;214(4):515.e1–515.e13.

    Google Scholar 

  65. Marincola FC, Noto A, Caboni P, et al. A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: preliminary results. J Matern Neonatal Med. 2012;25(suppl 5):62–67.

    CAS  Google Scholar 

  66. Longini M, Tataranno ML, Proietti F, et al. A metabolomic study of preterm and term human and formula milk by proton MRS analysis: preliminary results. J Matern Fetal Neonatal Med. 2014;27(Suppl 2):27–33.

    Google Scholar 

  67. Spevacek AR, Smilowitz JT, Chin EL, Underwood MA, German JB, Slupsky CM. Infant maturity at birth reveals minor differences in the maternal milk metabolome in the first month of lactation. J Nutr. 2015;145(8):1698–1708.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sundekilde UK, Downey E, O’Mahony JA, et al. The effect of gestational and lactational age on the human milk metabolome. Nutrient. 2016;8(5):304.

    Google Scholar 

  69. Cecatti JG, Souza RT, Sulek K, et al. Use of metabolomics for the identification and validation of clinical biomarkers for preterm birth: preterm SAMBA. BMC Pregnancy Childbirth. 2016; 16(1):212.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Gil PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, A.M., Duarte, D. Biofluid Metabolomics in Preterm Birth Research. Reprod. Sci. 25, 967–977 (2018). https://doi.org/10.1177/1933719118756748

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118756748

Keywords

Navigation