Skip to main content

Advertisement

Log in

Optimization of Endometrial Decidualization in the Menstruating Mouse Model for Preclinical Endometriosis Research

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background: To induce endometrial decidualization in rodents, an intrauterine oil stimulus can be delivered via the nontraumatic vagina or via the traumatic laparotomy. However, there is considerable variation in amount of decidualization using these inducing methods. Therefore, we studied which oil delivery route could achieve the highest rate of endometrial decidualization along the full length of both uterine horns. Methods: To induce decidualization, ovariectomized C57BI/6J mice were injected with estrogen (100 ng/day; 3 days). A progesterone pellet (5 mg) was implanted subcutaneously, followed by estrogen injections (5 ng/day; 3 days). Oil (20 μL/horn) was injected in the uterus via laparotomy, laparoscopy, or vagina. Four days later, the pellet was removed, followed by hysterectomy after 4 to 6 hours. Endometrial decidualization was evaluated macroscopically and microscopically using hematoxylin and eosin and desmin staining. Furthermore, uterine weight and hormone levels were measured. Results: The proportion of animals with macroscopic bicornuate decidualization was higher after laparoscopic (83%) and laparotomic (89%) injection than after sham injection (I 1%). Furthermore, macroscopic bicornuate decidualization was significantly higher after laparotomic injection (89%) compared to the vaginal injection (38%). Uterine weight and endometrial surface area were significantly higher in both laparotomy and laparoscopy groups compared to the sham group, while the relative desmin-positive endometrial surface area was only significantly different between the laparotomy and the sham animals. Conclusion: Methods using laparoscopic and laparotomic intrauterine oil injection resulted in a higher amount of decidualized endometrium compared to sham injection, although further optimization is needed to reach full bicornuate decidualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447): 1789–1799.

    PubMed  Google Scholar 

  2. Wheeler JM. Epidemiology of endometriosis-associated infertility. J Reprod Med. 1989;34(1): 41–46.

    CAS  PubMed  Google Scholar 

  3. Stilley JA, Birt JA, Sharpe-Timms KL. Cellular and molecular basis for endometriosis-associated infertility. Cell Tissue Res. 2012;349(3):849–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sampson JA. Peritoneal endometriosis due to the menstrual dis-semination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14(4):422–469.

    Article  Google Scholar 

  5. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retro-grade menstruation in healthy women and in patients with endo-metriosis. Obstet Gynecol. 1984;64(2):151–154.

    CAS  PubMed  Google Scholar 

  6. O DF, Roskams T, Van den Eynde K, et al. The presence of endometrial cells in peritoneal fluid of women with and without endometriosis. Reprod Sci. 2017;24(2):242–251.

    Article  CAS  Google Scholar 

  7. Pullen N, Birch CL, Douglas GJ, Hussain Q, Pruimboom-Brees I, Walley RJ. The translational challenge in the development of new and effective therapies for endometriosis: a review of confidence from published preclinical efficacy studies. Hum Reprod Update. 2011;17(6):791–802.

    Article  PubMed  Google Scholar 

  8. Tirado-Gonzalez I, Barrientos G, Tariverdian N, et al. Endome-triosis research: animal models for the study of a complex disease. J Reprod Immunol. 2010;6(2):141–141.

    Article  Google Scholar 

  9. Grummer R. Animal models in endometriosis research. Hum Reprod Update. 2006;12(5):641–649.

    Article  PubMed  Google Scholar 

  10. Peterse DP, Fassbender A, DF O, et al. Laparoscopic surgery: a new technique to induce endometriosis in a mouse model. Reprod Sci. 2016;23(10):1332–1339.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng CW, Licence D, Cook E, et al. Activation of mutated K-ras in donor endometrial epithelium and stroma promotes lesion growth in an intact immunocompetent murine model of endome-triosis. J Pathol. 2011;224(2):261–269.

    Article  CAS  PubMed  Google Scholar 

  12. Greaves E, Cousins FL, Murray A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184(7):1930–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergqvist A, Jeppsson S, Kullander S, Ljungberg O. Human uter-ine endometrium and endometriotic tissue transplanted into nude mice. Morphologic effects of various steroid hormones. Am J Pathol. 1985;121(2):337–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bruner-Tran KL, Eisenberg E, Yeaman GR, Anderson TA, McBean J, Osteen KG. Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establish-ment of experimental endometriosis in nude mice. J Clin Endo-crinol Metab. 2002;87(10):4782–4791.

    Article  CAS  Google Scholar 

  15. Rudolph M, Docke WD, Muller A, et al. Induction of overt men-struation in intact mice. PLoS One. 2012;7(3):e32922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical per-spectives. Semin Reprod Med. 2007;25(6):445–453.

    Article  CAS  PubMed  Google Scholar 

  17. Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol. 2003;178(3):357–372.

    Article  CAS  PubMed  Google Scholar 

  18. Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1): 17–46.

    Article  CAS  PubMed  Google Scholar 

  19. Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125(3):301–311.

    Article  CAS  PubMed  Google Scholar 

  20. Finn CA, Pope M. Vascular and cellular changes in the decidua-lized endometrium of the ovariectomized mouse following cessation of hormone treatment: a possible model for menstruation. J Endocrinol. 1984;100(3):295–300.

    Article  CAS  PubMed  Google Scholar 

  21. Brasted M, White CA, Kennedy TG, Salamonsen LA. Mimicking the events of menstruation in the murine uterus. Biol Reprod. 2003;69(4):1273–1280.

    Article  CAS  PubMed  Google Scholar 

  22. Cousins FL, Murray A, Esnal A, Gibson DA, Critchley HO, Saunders PT. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation. PLoS One. 2014;9(1): e86378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Menning A, Walter A, Rudolph M, Gashaw I, Fritzemeier KH, Roese L. Granulocytes and vascularization regulate uterine bleed-ing and tissue remodeling in a mouse menstruation model. PLoS One. 2012;7(8):e41800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu XB, He B, Wang JD. Menstrual-like changes in mice are provoked through the pharmacologic withdrawal of progesterone using mifepristone following induction of decidualization. Hum Reprod. 2007;22(12):3184–3191.

    Article  CAS  PubMed  Google Scholar 

  25. Kaitu’u-Lino TJ, Morison NB, Salamonsen LA. Estrogen is not essential for full endometrial restoration after breakdown: lessons from a mouse model. Endocrinology. 2007;148(10):5105–5111.

    Article  CAS  PubMed  Google Scholar 

  26. Kaitu’u-Lino TJ, Ye L, Salamonsen LA, Girling JE, Gargett CE. Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair. Biol Reprod. 2012;86(6):184.

    PubMed  Google Scholar 

  27. Morison NB, Kaitu’u-Lino TJ, Fraser IS, Salamonsen LA. Stimulation of epithelial repair is a likely mechanism for the action of mifepristone in reducing duration of bleeding in users of progestogen-only contraceptives. Reproduction. 2008;136(2): 267–274.

    Article  CAS  PubMed  Google Scholar 

  28. Morison NB, Zhang J, Kaitu’u-Lino TJ, Fraser IS, Salamonsen LA. The long-term actions of etonogestrel and levonorgestrel on decidualized and non-decidualized endometrium in a mouse model mimic some effects of progestogen-only contraceptives in women. Reproduction. 2007;133(1):309–321.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Xu X, He B, Li Y, Chen X, Wang J. A critical period of progesterone withdrawal precedes endometrial breakdown and shedding in mouse menstrual-like model. Hum Reprod. 2013; 28(6): 1670–1678.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Liu J, He B, et al. Vascular endothelial growth factor (VEGF) regulation by hypoxia inducible factor-1 alpha (HIF1A) starts and peaks during endometrial breakdown, not repair, in a mouse menstrual-like model. Hum Reprod. 2015;30(9): 2160–2170.

    Article  CAS  PubMed  Google Scholar 

  31. Milligan SR, Cohen PE. Silastic implants for delivering physio-logical concentrations of progesterone to mice. Reprod Fertil Dev. 1994;6(2):235–239.

    Article  CAS  PubMed  Google Scholar 

  32. Molinas CR, Mynbaev O, Pauwels A, Novak P, Koninckx PR. Peritoneal mesothelial hypoxia during pneumoperitoneum is a cofactor in adhesion formation in a laparoscopic mouse model. Fertil Steril. 2001;76(3):560–567.

    Article  CAS  PubMed  Google Scholar 

  33. Reel JR, Lamb IJ, Neal BH. Survey and assessment of mamma-lian estrogen biological assays for hazard characterization. Fundam Appl Toxicol. 1996;34(2):288–305.

    Article  CAS  PubMed  Google Scholar 

  34. Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009; Appendix 4:Appendix 41.

    Google Scholar 

  35. Goldman JM, Murr AS, Cooper RL. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol. 2007;80(2): 84–97.

    Article  CAS  PubMed  Google Scholar 

  36. Glasser SR, Julian J. Intermediate filament protein as a marker of uterine stromal cell decidualization. Biol Reprod. 1986;35(2): 463–474.

    Article  CAS  PubMed  Google Scholar 

  37. Pera M, Nelson H, Rajkumar SV, Young-Fadok TM, Burgart LJ. Influence of postoperative acute-phase response on angiogenesis and tumor growth: open vs. laparoscopic-assisted surgery in mice. J Gastrointest Surg. 2003;7(6):783–790.

    Article  PubMed  Google Scholar 

  38. Ferrero H, Buigues A, Martinez J, Simon C, Pellicer A, Gomez R. A novel homologous model for noninvasive monitoring of endometriosis progression. Biol Reprod. 2017;96(2): 302–312.

    Article  PubMed  Google Scholar 

  39. Buxton LE, Murdoch RN. Lectins, calcium ionophore A23187 and peanut oil as deciduogenic agents in the uterus of pseudopregnant mice: effects of tranylcypromine, indo-methacin, iproniazid and propranolol. Aust J Biol Sci. 1982;35(1): 63–72.

    Article  CAS  PubMed  Google Scholar 

  40. Herington JL, Underwood T, McConaha M, Bany BM. Paracrine signals from the mouse conceptus are not required for the normal progression of decidualization. Endocrinology. 2009;150(9): 4404–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edwards C, Milligan SR. Uterine blood flow during the develop-ment and regression of the decidual cell reaction in ovariecto-mized, steroid-treated mice. J Reprod Fertil. 1987;81(2):525–532.

    Article  CAS  PubMed  Google Scholar 

  42. Oliveira SF, Greca CP, Abrahamsohn PA, Reis MG, Zorn TM. Organization of desmin-containing intermediate filaments during differentiation of mouse decidual cells. Histochem Cell Biol. 2000;113(4):319–327.

    Article  CAS  PubMed  Google Scholar 

  43. Corona R, Verguts J, Binda MM, Molinas CR, Schonman R, Koninckx PR. The impact of the learning curve on adhesion formation in a laparoscopic mouse model. Fertil Steril. 2011;96(1):193–197.

    Article  PubMed  Google Scholar 

  44. Das SK. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction. 2009;137(6):889–899.

    Article  CAS  PubMed  Google Scholar 

  45. Nair AR, Taylor HS. Amenorrhea. In: Santoro NF, Neal-Perry G, eds. A Case-Based, Clinical Guide, NY: Humana Press; 2010:XII 220.

    Google Scholar 

  46. Ramathal CY, Bagchi IC, Taylor RN, Bagchi MK. Endometrial decidualization: of mice and men. Semin Reprod Med. 2010; 28(1): 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. D’Hooghe MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterse, D., Clercq, K.D., Goossens, C. et al. Optimization of Endometrial Decidualization in the Menstruating Mouse Model for Preclinical Endometriosis Research. Reprod. Sci. 25, 1577–1588 (2018). https://doi.org/10.1177/1933719118756744

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118756744

Keywords

Navigation