Skip to main content

Advertisement

Log in

Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Retinoic acid (RA) signaling through its receptors (RARA, RARB, RARG, and the retinoic X receptor RXRA) is essential for healthy placental and fetal development. An important group of genes regulated by RA are the RA receptor responders (RARRES1, 2, and 3). We set out to analyze their expression and regulation in healthy and pathologically altered placentas of preeclampsia (PE) and intrauterine growth restriction (IUGR) as well as in trophoblast cell lines.

Methods

We performed immunohistochemical staining on placental sections and analyzed gene expression by real-time polymerase chain reaction. Additionally, we performed cell culture experiments and stimulated Swan71 and Jeg-3 cells with different RA derivates and 20-deoxy-5-azacytidine (AZA) to induce DNA demethylation.

Results

RARRES1, 2, and 3 and RARA, RARB, RARG, and RXRA are expressed in the extravillous part of the placenta. RARRES1, RARA, RARG, and RXRA were additionally detected in villous cytotrophoblasts. RARRES gene expression was induced via activation of RARA, RARB, and RARG in trophoblast cells. RARRES1 was overexpressed in villous trophoblasts and the syncytiotrophoblast from PE placentas, but not in IUGR without PE. Promoter methylation was detectable for RARRES1 and RARB based on their sensitivity toward AZA treatment of trophoblast cell lines.

Discussion

RARRES1, 2 and 3 are expressed in the functional compartments of the human placenta and can be regulated by RA. We hypothesize that the epigenetic suppression of trophoblast RARRES1 and RARB expression and the upregulation of RARRES1 in PE trophoblast cells suggest an involvement of environmental factors (eg, maternal vitamin A intake) in the pathogenesis of this pregnancy complication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen M-C, Hsu S-L, Lin H, Yang T-Y. Retinoic acid and cancer treatment. Biomedicine (Taipei). 2014;4(4):22.

    PubMed  PubMed Central  Google Scholar 

  2. Nagpal S, Patel S, Asano AT, Johnson AT, Duvic M, Chandraratna RA. Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J Invest Dermatol. 1996;106(2):269–274.

    CAS  PubMed  Google Scholar 

  3. Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell biol. 2015;16(2):110–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rhinn M, Dollé P. Retinoic acid signalling during development. Development. 2012;139(5):843–858.

    CAS  PubMed  Google Scholar 

  5. Das BC, Thapa P, Karki R, et al. Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem. 2014;22(2):673–683.

    CAS  PubMed  Google Scholar 

  6. Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci. 2002;3(11):843–853.

    CAS  PubMed  Google Scholar 

  7. Merlet-Bénichou C, Vilar J, Lelièvre-Pégorier M, Gilbert T. Role of retinoids in renal development: pathophysiological implication. Curr Opin Nephrol Hypertens. 1999;8(1):39–43.

    PubMed  Google Scholar 

  8. Nagpal S, Chandraratna RA. Recent developments in receptor-selective retinoids. Curr Pharm Des. 2000;6(9):919–931.

    CAS  PubMed  Google Scholar 

  9. Allenby G, Bocquel M-T, Saunders M, et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A. 1993;90(1):30–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kato Y, Braunstein GD. Retinoic acid stimulates placental hormone secretion by choriocarcinoma cell lines in vitro. Endocrinology. 1991;128(1):401–407.

    CAS  PubMed  Google Scholar 

  11. Stephanou A, Handwerger S. Retinoic acid and thyroid hormone regulate placental lactogen expression in human trophoblast cells. Endocrinology. 1995;136(3):933–938.

    CAS  PubMed  Google Scholar 

  12. Tarrade A, Schoonjans K, Guibourdenche J, et al. PPARγ/RXRα heterodimers are involved in human CGβ synthesis and human trophoblast differentiation. Endocrinology. 2001;142(10):4504–4514.

    CAS  PubMed  Google Scholar 

  13. Tarrade A, Schoonjans K, Pavan L, et al. PPARγ/RXRα heterodimers control human trophoblast invasion. J Clin Endocrinol Metab. 2001;86(10):5017–5024.

    CAS  PubMed  Google Scholar 

  14. Ruebner M, Langbein M, Strissel PL, et al. Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. J Cell Biochem. 2012;113(7):2383–2396.

    CAS  PubMed  Google Scholar 

  15. Parast MM, Yu H, Ciric A, Salata MW, Davis V, Milstone DS. PPARγ regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation. PLoS One. 2009;4(11):e8055.

    PubMed  PubMed Central  Google Scholar 

  16. Peng Z, Shen R, Li Y-W, Teng K-Y, Shapiro CL, Lin H-JL. Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PloS One. 2012;7(5):e36891.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jing C, El-Ghany MA, Beesley C, Foster CS, Rudland PS, Smith P, et al. Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J Natl Cancer Inst. 2002;94(7):482–490.

    CAS  PubMed  Google Scholar 

  18. Oldridge EE, Walker HF, Stower MJ, et al. Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis. 2013;2:e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu CC, Tsai FM, Shyu RY, Tsai YM, Wang CH, Jiang SY. G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer. 2011;11:175.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohnishi S, Okabe K, Obata H, et al. Involvement of tazarotene-induced gene 1 in proliferation and differentiation of human adipose tissue-derived mesenchymal stem cells. Cell Prolif. 2009;42(3):309–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zabel BA, Allen SJ, Kulig P, et al. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem. 2005;280(41):34661–34666.

    CAS  PubMed  Google Scholar 

  22. Ernst MC, Sinal CJ. Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol Metab. 2010;21(11):660–667.

    CAS  PubMed  Google Scholar 

  23. Ferland DJ, Watts SW. Chemerin: a comprehensive review elucidating the need for cardiovascular research. Pharmacol Res. 2015;99:351–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagpal S, Patel S, Jacobe H, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol. 1997;109(1):91–95.

    CAS  PubMed  Google Scholar 

  25. Garces MF, Sanchez E, Ruíz-Parra AI, et al. Serum chemerin levels during normal human pregnancy. Peptides. 2013;42:138–143.

    CAS  PubMed  Google Scholar 

  26. Erdogan S, Yilmaz FM, Yazici O, et al. Inflammation and chemerin in colorectal cancer. Tumor Biology. 2016;37(5):6337–6342.

    CAS  PubMed  Google Scholar 

  27. Szydło B, Kiczmer P, Świętochowska E, Ostrowska Z. Role of omentin and chemerin in metabolic syndrome and tumor diseases. Postępy Hig Med Dośw (Online). 2016;70(0):844–849.

    PubMed  Google Scholar 

  28. Farsam V, Basu A, Gatzka M, et al. Senescent fibroblast-derived chemerin promotes squamous cell carcinoma migration. Oncotarget. 2016;7(50):83554–83569.

    PubMed  PubMed Central  Google Scholar 

  29. Morales M, Arenas EJ, Urosevic J, et al. RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation. EMBO Mol Med. 2014;6(7):865–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z, Wang L, Hu J, et al. RARRES3 suppressed metastasis through suppression of MTDH to regulate epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res. 2015;5(6):1988–1899.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Higuchi E, Chandraratna RA, Hong WK, Lotan R. Induction of TIG3, a putative class II tumor suppressor gene, by retinoic acid in head and neck and lung carcinoma cells and its association with suppression of the transformed phenotype. Oncogene. 2003;22(30):4627–4635.

    CAS  PubMed  Google Scholar 

  32. Shutoh M, Oue N, Aung PP, et al. DNA methylation of genes linked with retinoid signaling in gastric carcinoma: expression of the retinoid acid receptor beta, cellular retinol-binding protein 1, and tazarotene-induced gene 1 genes is associated with DNA methylation. Cancer. 2005;104(8):1609–1619.

    CAS  PubMed  Google Scholar 

  33. Zhang J, Liu L, Pfeifer GP. Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene. 2004;23(12):2241–2249.

    CAS  PubMed  Google Scholar 

  34. de The H, del Mar Vivanco-Ruiz M, Tiollais P, Stunnenberg H, Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor & beta; gene. Nature. 1990;343(6254):177–180.

    PubMed  Google Scholar 

  35. Alholle A, Brini AT, Gharanei S, et al. Functional epigenetic approach identifies frequently methylated genes in ewing sarcoma. Epigenetics. 2013;8(11):1198–1204.

    CAS  PubMed  Google Scholar 

  36. Mohammad N, Yaqinuddin A, Kakal F, Sheikh L, Qureshi R, Somani M. Frequent hypomethylation of PTGS2 gene promoter in human term placenta. Ital J Anat Embryol. 2013;118(2):211–216.

    PubMed  Google Scholar 

  37. Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2007;13(2):121–141.

    CAS  PubMed  Google Scholar 

  38. Huppertz B. Placental origins of preeclampsia challenging the current hypothesis. Hypertension. 2008;51(4):970–975.

    CAS  PubMed  Google Scholar 

  39. Bracken MB, Brinton LA, Hayashi K. Epidemiology of hydatidiform mole and choriocarcinoma. Epidemiol Rev. 1984;6:52–75.

    CAS  PubMed  Google Scholar 

  40. Fahlbusch FB, Dawood Y, Hartner A, et al. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated via oxygen tension: implications for intrauterine growth restriction? J Matern Fetal Neonatal Med. 2012;25(11):2209–2215.

    CAS  PubMed  Google Scholar 

  41. Ruebner M, Strissel PL, Ekici AB, et al. Reduced syncytin-1 expression levels in placental syndromes correlates with epigenetic hypermethylation of the ERVW-1 promoter region. PLoS One. 2013;8(2):e56145.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruebner M, Strissel PL, Langbein M, et al. Impaired cell fusion and differentiation in placentae from patients with intrauterine growth restriction correlate with reduced levels of HERV envelope genes. J Mol Med (Berl). 2010;88(11):1143–1156.

    CAS  PubMed  Google Scholar 

  43. Straszewski-Chavez SL, Abrahams VM, Alvero AB, et al. The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line, Swan 71. Placenta. 2009;30(11):939–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yen A, Fenning R, Chandraratna R, Walker P, Varvayanis S. A retinoic acid receptor β/γ-selective prodrug (tazarotene) plus a retinoid X receptor ligand induces extracellular signal-regulated kinase activation, retinoblastoma hypophosphorylation, G0 arrest, cell differentiation. Mol pharmacol. 2004;66(6):1727–1737.

    CAS  PubMed  Google Scholar 

  45. Chandraratna R. Tazarotene—first of a new generation of receptor-selective retinoids. Br J Dermatol. 1996;135(suppl 49):18–25.

    CAS  PubMed  Google Scholar 

  46. Chandraratna RA. Tazarotene: the first receptor-selective topical retinoid for the treatment of psoriasis. J Am Acad Dermatol. 1997;37(2 pt 3):S12–S17.

    CAS  PubMed  Google Scholar 

  47. Bosch A, Bertran SP, Lu Y, et al. Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis. Breast Cancer Res. 2012;14++(4):R121.

    Google Scholar 

  48. Ancian P, Lenoir M, Michel S. Effects of CD 2665, a selective RARβ, γ antagonist on the retinoid activity in human keratinocytes and fibroblasts in culture. J Inv Dermatol. 1997;5(108):817.

    Google Scholar 

  49. Somenzi G, Sala G, Rossetti S, Ren M, Ghidoni R, Sacchi N. Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid. PloS one. 2007;2++(9):e836.

    Google Scholar 

  50. Shrestha S, Kim S-Y, Yun Y-J, et al. Retinoic acid induces hypersegmentation and enhances cytotoxicity of neutrophils against cancer cells. Immunol Lett. 2017;182:24–29.

    CAS  PubMed  Google Scholar 

  51. Lo H-M, Chen C-L, Yang C-M, et al. The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RARβ activation in murine macrophages. J Leukoc Biol. 2013;93(5):723–735.

    CAS  PubMed  Google Scholar 

  52. Rouliera S, Rochette-Egly C, Rebut-Bonneton C, Porquet D, Evain-Brion D. Nuclear retinoic acid receptor characterization in cultured human trophoblast cells: effect of retinoic acid on epidermal growth factor receptor expression. Mol Cell Endocrinol. 1994;105(2):165–173.

    Google Scholar 

  53. Tang X-H, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Patho. 2011;6:345–364.

    CAS  Google Scholar 

  54. Jerónimo C, Henrique R, Hoque MO, et al. Quantitative RARβ2 Hypermethylation A Promising Prostate Cancer Marker. Clin Cancer Res. 2004;10(12 pt 1):4010–4014.

    PubMed  Google Scholar 

  55. Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Müller SC, von Rücker A. Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur Urol. 2007;51(3):665–674.

    CAS  PubMed  Google Scholar 

  56. Jha A, Nikbakht M, Parashar G, Shrivastava A, Capalash N, Kaur J. Reversal of Hypermethylation and Reactivation of the RAR [Beta] 2 Gene by Natural Compounds in Cervical Cancer Cell Lines. Folia Biol(Praha). 2010;56(5):195–200.

    CAS  PubMed  Google Scholar 

  57. Wang X, Saso H, Iwamoto T, et al. TIG1 Promotes the Development and Progression of Inflammatory Breast Cancer through Activation of Axl Kinase. Cancer Res. 2013;73(21):6516–6525.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu CC, Shyu RY, Chou JM, et al. RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. Eur J Cancer. 2006;42(4):557–565.

    CAS  PubMed  Google Scholar 

  59. Yanatatsaneejit P, Chalermchai T, Kerekhanjanarong V, et al. Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral oncology. 2008;44(4):400–406.

    CAS  PubMed  Google Scholar 

  60. Coyle K, Murphy J, Vidovic D, et al. Breast cancer subtype dictates DNA methylation and ALDH1A3-mediated expression of tumor suppressor RARRES1. Oncotarget. 2016;7(28):44098–44112.

    Google Scholar 

  61. Langbein M, Strick R, Strissel PL, et al. Impaired cytotrophoblast cell-cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev. 2008;75(1):175–183.

    PubMed  Google Scholar 

  62. Gauster M, Moser G, Orendi K, Huppertz B. Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta. 2009;30(suppl A):S49–S54.

    PubMed  Google Scholar 

  63. Heazell A, Moll S, Jones C, Baker P, Crocker I. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta. 2007;28(suppl A):S33–S40.

    PubMed  Google Scholar 

  64. Burton GJ, Jones CJ. Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan J Obstet Gynecol. 2009;48(1):28–37.

    PubMed  Google Scholar 

  65. Holdsworth-Carson S, Lim R, Mitton A, et al. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta. 2010;31(3):222–219.

    CAS  PubMed  Google Scholar 

  66. Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta. 2012;33(5):352–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Newhouse SM, Davidge ST, Winkler-Lowen B, Demianczuk N, Guilbert LJ. In Vitro Differentiation of Villous Trophoblasts from Pregnancies Complicated by Intrauterine Growth Restriction With and Without Pre-Eclampsia. Placenta. 2007;28(10):999–1003.

    CAS  PubMed  Google Scholar 

  68. Fahlbusch FB, Ruebner M, Volkert G, et al. Corticotropin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts. Reprod Biol Endocrinol. 2012;10(1):80.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shyu R, Jiang S, Chou J, et al. RARRES3 expression positively correlated to tumour differentiation in tissues of colorectal adenocarcinoma. Br J Cancer. 2003;89(1):146–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Casanova B, de la Fuente MT, Garcia-Gila M, et al. The class II tumor-suppressor gene RARRES3 is expressed in B cell lymphocytic leukemias and down-regulated with disease progression. Leukemia. 2001;15(10):1521–1526.

    CAS  PubMed  Google Scholar 

  71. Li HW, Cheung AN, Tsao SW, Cheung AL, WS O. Expression of e-cadherin and beta-catenin in trophoblastic tissue in normal and pathological pregnancies. Int J Gynecol Pathol. 2003;22(1):63–70.

    PubMed  Google Scholar 

  72. Kasher-Meron M, Mazaki-Tovi S, Barhod E, et al. Chemerin concentrations in maternal and fetal compartments: implications for metabolic adaptations to normal human pregnancy. J Perinat Med. 2014;42(3):371–378.

    CAS  PubMed  Google Scholar 

  73. Stepan H, Philipp A, Roth I, et al. Serum levels of the adipokine chemerin are increased in preeclampsia during and 6months after pregnancy. Regul Pept. 2011;168(1):69–72.

    CAS  PubMed  Google Scholar 

  74. Duan DM, Niu JM, Lei Q, Lin XH, Chen X. Serum levels of the adipokine chemerin in preeclampsia. J Perinat Med. 2012;40(2):121–127.

    CAS  Google Scholar 

  75. Verlinden I, Güngör N, Janssens J, Michiels L. Gene expression profiling to identify parity-induced changes in the human mammary gland. Breast Cancer Res. 2005;7:1.

    Google Scholar 

  76. Xu X-C. Tumor-suppressive activity of retinoic acid receptor-b in cancer. Cancer Lett. 2007;253(1):14–24.

    CAS  PubMed  Google Scholar 

  77. Guibourdenche J, Roulier S, Rochette-Egly C, Evain-Brion D. High retinoid X receptor expression in JEG-3 choriocarcinoma cells: involvement in cell function modulation by retinoids. J Cell Physiol. 1998;176(3):595–601.

    CAS  PubMed  Google Scholar 

  78. Guibourdenche J, Alsat E, Soncin F, Rochette-Egly C, Evain-Brion D. Retinoid receptors expression in human term placenta: involvement of RXRa in retinoid induced-hCG secretion. J Clin Endocrinol Metab. 1998;83(4):1384–1387.

    CAS  PubMed  Google Scholar 

  79. Rodie VA, Young A, Jordan F, Sattar N, Greer IA, Freeman D. Human placental peroxisome proliferator-activated receptor d and g expression in healthy pregnancy and in preeclampsia and intrauterine growth restriction. J Soc Gynecol Investig. 2005;12(5):320–329.

    CAS  PubMed  Google Scholar 

  80. Tarrade A, Rochette-Egly C, Guibourdenche J, Evain-Brion D. The expression of nuclear retinoid receptors in human implantation. Placenta. 2000;21(7):703–710.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Huebner PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huebner, H., Hartner, A., Rascher, W. et al. Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta. Reprod. Sci. 25, 1357–1370 (2018). https://doi.org/10.1177/1933719117746761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117746761

Keywords

Navigation