Skip to main content

Advertisement

Log in

Stress During Development of Experimental Endometriosis Influences Nerve Growth and Disease Progression

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Purpose

We have previously shown that stress prior to induction worsens clinical presentation and inflammatory parameters in a rat model of endometriosis. This study was designed to examine whether stress during the development of endometriosis can affect the growth of endometriotic implants through nerve growth and immune alterations.

Methods

Endometriosis was surgically induced in female Sprague-Dawley rats by suturing uterine horn implants onto the small intestine mesentery. Two weeks later, one group of rats (endo-stress) was subjected to a 10-day swim stress protocol. Controls had no stress (endo-no stress) or sutures only and stress (sham-stress). On day 60, all rats were killed and examined for the presence of endometriotic vesicles. The size of each vesicle was measured. The uterus and colon were removed and assessed for damage, cell infiltration, and expression of nerve growth factor (NGF), its receptors (p75 and Tropomyosin receptor kinase A (Trk-A)/pTrk-A), and calcitonin gene-related peptide, a sensory fiber marker. A differential analysis of peritoneal fluid white blood cell count was performed.

Results

Stress significantly increased endometriotic vesicle size but not colonic damage and increased infiltration of mast cells. Significantly increased expression of NGF and its receptors was found in the uterus of animals with endometriosis receiving stress.

Conclusions

Stress stimulates the development of ectopic endometrial vesicles in an animal model of endometriosis and increases inflammatory cell recruitment to the peritoneum. In addition, stress promotes nerve fiber growth in the uterus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tariverdian N, Rucke M, Szekeres-Bartho J, et al. Neuroendocrine circuitry and endometriosis: progesterone derivative dampens corticotropin-releasing hormone-induced inflammation by peritoneal cells in vitro. J Mol Med. 2010;88(3):267–278.

    Article  CAS  PubMed  Google Scholar 

  2. Toth B. Stress, inflammation and endometriosis: are patients stuck between a rock and a hard place? J Mol Med. 2010;88(3): 223–225.

    Article  PubMed  Google Scholar 

  3. Huntington A, Gilmour JA. A life shaped by pain: women and endometriosis. J Clin Nurs. 2005;14(9):1124–1132.

    Article  PubMed  Google Scholar 

  4. Barnack JL, Chrisler JC. The experience of chronic illness in women: a comparison between women with endometriosis and women with chronic migraine headaches. Women Health. 2007;46(1):115–133.

    Article  PubMed  Google Scholar 

  5. Cousineau TM, Green TC, Corsini E, Seibring A, et al. Online psychoeducational support for infertile women: a randomized controlled trial. Hum Reprod. 2008;23(3):554–566.

    Article  PubMed  Google Scholar 

  6. Harrison V, Rowan K, Mathias J. Stress reactivity and family relationships in the development and treatment of endometriosis. Fertil Steril. 2005;83(4):857–864.

    Article  PubMed  Google Scholar 

  7. Cuevas M, Flores I, Thompson KJ, Ramos-Ortolaza DL, Torres-Reveron A, Appleyard CB. Stress exacerbates endometriosis manifestations and inflammatory parameters in an animal model Reprod Sci. 2012;19(8):851–862. Epub 2012 Apr 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Appleyard CB, Cruz ML, Hernandez S, Thompson KJ, Bayona M, Flores I. Stress management affects outcomes in the patho-physiology of an endometriosis model. Reprod Sci. 2015;22(4): 431–441.

    Article  CAS  PubMed  Google Scholar 

  9. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    Article  CAS  PubMed  Google Scholar 

  10. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endo-metriosis. Fertile Steril. 2001;75(1):1–10.

    Article  CAS  Google Scholar 

  12. Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24(8):444–448.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzaki S, Canis M, Darcha C, Fukaya T, Yajima A, Bruhat MA. Increased mast cell density in peritoneal endometriosis compared with eutopic endometrium with endometriosis. Am J Reprod Immunol. 1998;40(4):291–294.

    Article  CAS  PubMed  Google Scholar 

  14. Anaf V, Chapron C, Nakadi IE, De Moor V, Simonart T, Noel J-C. Pain, mast cells, and nerves in peritoneal, ovarian and deep infiltrating endometriosis. Fertil Steril. 2006;86(5):1336–1343.

    Article  PubMed  Google Scholar 

  15. Bienenstock J, Tomioka M, Matsuda H, et al. The role of mast cells in inflammatory processes: evidence for nerve/mast cell interactions. Int Arch Allergy Appl Immunol. 1987;82(3-4): 238–243.

    Article  CAS  PubMed  Google Scholar 

  16. Dines KC, Powell HC. Mast cell interactions with the nervous system: relationship to mechanisms of disease. J Neuropathol Exp Neurol. 1997;56(6):627–640.

    Article  CAS  PubMed  Google Scholar 

  17. Marshall JS, Gomi K, Blennerhassett MG, Bienenstock J. Nerve growth factor modifies the expression of inflammatory cytokines by mast cells via a prostanoid-dependent mechanism. J Immunol. 1999;162(7):4271–4276.

    CAS  PubMed  Google Scholar 

  18. Berkley KJ, Dmitrieva N, Curtis KS, Papka RE. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci USA. 2004;101(30):11094–11098. Epub 2004 Jul 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McAllister SL, Dmitrieva N, Berkley KJ. Sprouted innervation into uterine transplants contributes to the development of hyper-algesia in a rat model of endometriosis. PLoS One. 2012;7(2): e31758. Epub 2012 Feb 21.

    Article  CAS  Google Scholar 

  20. D’Hooghe T, Hummelshoj L. Multi-disciplinary centres/networks of excellence for endometriosis management and research: a proposal. Hum Reprod. 2006;21(11):2743–2748. Epub 2006 Sep 18.

    Article  PubMed  Google Scholar 

  21. Vernon MW, Wilson EA. Studies on the surgical induction of endometriosis in the rat. Fertil Steril. 1985;44(5):684–694.

    Article  CAS  PubMed  Google Scholar 

  22. Appleyard CB, Cruz ML, Rivera E, Hernandez GA, Flores I. Experimental endometriosis in the rat is correlated with colonic motor function alterations but not with bacterial load. Reprod Sci. 2007;14(8):815–824.

    Article  PubMed  Google Scholar 

  23. Maillot C, Million M, Wei JY, Gauthier A, Tache Y. Peripheral corticotropin-releasing factor and stress-stimulated colonic motor activity involve type 1 receptor in rats. Gastroenterology. 2000;119(6):1569–1579.

    Article  CAS  PubMed  Google Scholar 

  24. Ingelmo MR, Quereda F, Acien P. Intraperitoneal and subcutaneous treatment of experimental endometriosis with recombinant human interferon-a-2b in a murine model. Fertil Steril. 1999;71(5):907–911.

    Article  CAS  PubMed  Google Scholar 

  25. Boughton-Smith NK, Wallace JL, Whittle BJ. Relationship between arachidonic acid metabolism, myeloperoxidase activity and leukocyte infiltration in a rat model of inflammatory bowel disease. Agents Actions. 1998;25(1-2):115–123.

    Article  Google Scholar 

  26. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Derm. 1982;78(3):206–209.

    Article  CAS  PubMed  Google Scholar 

  27. Venkova K, Johnson AC, Myers B, Greenwood-Van Meerveld B. Exposure of the amygdala to elevated levels of corticosterone alters colonic motility in response to acute psychological stress. Neuropharmacology. 2010;58(7):1161–1167.

    Article  CAS  PubMed  Google Scholar 

  28. Hernandez S, Cruz ML, Seguinot II, Torres-Reveron A, Appleyard CB. Impact of psychological stress on pain perception in an animal model of endometriosis. Reprod Sci. 2017;24(10): 1371–1381.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cramer DW, Missmer SA. The epidemiology of endometriosis. Ann N YAcad Sci. 2002;955:11–22;discussion 34-6, 396-406.

    Article  Google Scholar 

  30. Fenster L, Waller K, Chen J, et al. Psychological stress in the workplace and menstrual function. Am J Epidemiol. 1999;149(2):127–134.

    Article  CAS  PubMed  Google Scholar 

  31. Kyama CM, Debrock S, Mwenda JM, D’Hooghe TM. Potential involvement of immune system in the development of endometriosis. Reprod Biol Endocrinol. 2003;1:123.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sugamata M, Ihara T, Uchiide I. Increase of activated mast cells in human endometriosis. Am J Reprod Immunol. 2005;53(3): 120–125.

    Article  PubMed  Google Scholar 

  33. Cairns JA, Walls AF. Mast cell tryptase stimulates the synthesis of type 1 collagen in human lung fibroblasts. J Clin Invest. 1997;99(6):1313–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hart A, Kamm MA. Review article: mechanisms of initiation and perpetuation of gut inflammation by stress. Aliment Pharmacol Therap. 2002;16(12):2017–2028.

    Article  CAS  Google Scholar 

  35. Mawdsley JE, Rampton DS. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut. 2005;54(10):1481–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tache Y, Perdue MH. Role of peripheral CRF signaling pathways in stress-related alterations of gut motility and mucosal function. Neurogastroenterol Motil. 2004;16(suppl 1):137–142. Review.

    Article  Google Scholar 

  37. O’Sullivan M, Clayton N, Breslin NP, et al. Increased mast cell in the irritable bowel syndrome. Neurogastroenterol Motil. 2000;12(5):449–457.

    Article  PubMed  Google Scholar 

  38. Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cell in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3): 693–702.

    Article  PubMed  Google Scholar 

  39. Berkley KJ, Rapkin AJ, Papka RE. The pains of endometriosis. Science. 2005;308(5728):1587–1589.

    Article  CAS  PubMed  Google Scholar 

  40. Anaf V, Simon P, El Nakadi I, et al. Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum Reprod. 2002;17(7):1895–1900.

    Article  PubMed  Google Scholar 

  41. Kajitani T, Maruyama T, Asada H, et al. Possible involvement of nerve growth factor in dysmenorrhea and dyspareunia associated with endometriosis. Endocr J. 2013;60(10):1155–1564.

    Article  CAS  PubMed  Google Scholar 

  42. Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci. 2006;29:507–538.

    Article  CAS  PubMed  Google Scholar 

  43. Kaplan DR, Martin-Zanaca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the Trk proto-oncogene product induced by NGF. Nature. 1991;350(6314):158–160.

    Article  CAS  PubMed  Google Scholar 

  44. Rueff A, Mendell LM. Nerve growth factor NT-5 induce increased thermal sensitivity of cutaneous nociceptors in vitro. J Neurophysiol. 1996;76(5):3593–3596.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang G, Dmitrieva N, Liu Y, McGinty KA, Berkley KJ. Endometriosis as a neurovascular condition: estrous variations in innervation, vascularization, and growth factor content of ectopic endometrial cysts in the rat. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R162-R171.

    Google Scholar 

  46. Barcena de Arellano ML, Arnold J, Lang H, et al. Evidence of neurotropic events due to peritoneal endometriotic lesions. Cytokine. 2013;62(2):253–261.

    Article  CAS  Google Scholar 

  47. Alvarez P, Levine JD. Screening the role of pronociceptive molecules in a rodent model of endometriosis pain. JPain. 2014;15(7): 726–733.

    CAS  Google Scholar 

  48. Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 1997;9(2):213–221.

    Article  CAS  PubMed  Google Scholar 

  49. Wang G, Tokushige N, Russell P, Dubinovsky S, Markham R, Fraser IS. Hyperinnervation in intestinal deep infiltrating endometriosis. J Minim Invasive Gynecol. 2009;16(6):713–719.

    Article  PubMed  Google Scholar 

  50. Anaf V, El Nakadi I, De Moor V, Chapron C, Pistofidis G, Noel JC. Increased nerve density in deep infiltrating endometriotic nodules. Gynecol Obstet Invest. 2011;71(2):112–117.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline B. Appleyard PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, M., Cruz, M.L., Ramirez, A.E. et al. Stress During Development of Experimental Endometriosis Influences Nerve Growth and Disease Progression. Reprod. Sci. 25, 347–357 (2018). https://doi.org/10.1177/1933719117737846

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117737846

Keywords

Navigation