Skip to main content
Log in

Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells.

Methods

Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein).

Results

Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells.

Conclusions

DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust proinflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/ prevention of preterm parturition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly RW. Inflammatory mediators and parturition. Rev Reprod. 1996;1(2):89–96.

    CAS  PubMed  Google Scholar 

  2. Lindstrom TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction. 2005;130(5):569–581.

    CAS  PubMed  Google Scholar 

  3. Patni S, Flynn P, Wynen LP, et al. An introduction to Toll-like receptors and their possible role in the initiation of labour. BJOG. 2007;114(11): 1326–1334.

    CAS  PubMed  Google Scholar 

  4. Phillippe M. Cell-free fetal DNA, telomeres, and the spontaneous onset of parturition. Reprod Sci. 2015;22(10):1186–1201.

    CAS  PubMed  Google Scholar 

  5. Lo YM, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan KC, Zhang J, Hui AB, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004;50(1):88–92.

    CAS  PubMed  Google Scholar 

  7. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun Y, Qin X, Shan B, et al. Differential effects of the CpG-Toll-like receptor 9 axis on pregnancy outcome in nonobese diabetic mice and wild-type controls. Fertil Steril. 2013;99(6):1759–1767.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ariga H, Ohto H, Busch MP, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41(12):1524–1530.

    CAS  PubMed  Google Scholar 

  10. Birch L, English CA, O’Donoghue K, Barigye O, Fisk NM, Keer JT. Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem. 2005;51(2):312–320.

    CAS  PubMed  Google Scholar 

  11. Majer S, Bauer M, Magnet E, et al. Maternal urine for prenatal diagnosis-an analysis of cell-free fetal DNA in maternal urine and plasma in the third trimester. Prenat Diagn. 2007;27(13): 1219–1223.

    CAS  PubMed  Google Scholar 

  12. Farina A, LeShane ES, Romero R, et al. High levels of fetal cell-free DNA in maternal serum: a risk factor for spontaneous preterm delivery. Am J Obstet Gynecol. 2005;193(2):421–425.

    CAS  PubMed  Google Scholar 

  13. Jakobsen TR, Clausen FB, Rode L, Dziegiel MH, Tabor A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenat Diagn. 2012;32(9):840–845.

    CAS  PubMed  Google Scholar 

  14. Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet. 1998;352(9144): 1904–1905.

    CAS  PubMed  Google Scholar 

  15. Caughey AB, Stotland NE, Washington AE, Escobar GJ. Who is at risk for prolonged and postterm pregnancy?. Am J Obstet Gynecol. 2009;200(6):683.e1–683.e5.

    Google Scholar 

  16. Heslehurst N, Simpson H, Ells LJ, et al. The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta-analysis. Obes Rev. 2008;9(6):635–683.

    CAS  PubMed  Google Scholar 

  17. Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013;33(7):662–666.

    CAS  PubMed  Google Scholar 

  18. Scharfe-Nugent A, Corr SC, Carpenter SB, et al. TLR9 provokes inflammation in response to fetal DNA: mechanism for fetal loss in preterm birth and preeclampsia. J Immunol. 2012;188(11): 5706–5712.

    CAS  PubMed  Google Scholar 

  19. Gursel I, Gursel M, Yamada H, Ishii KJ, Takeshita F, Klinman DM. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J Immunol. 2003; 171 (3): 1393–1400.

    CAS  PubMed  Google Scholar 

  20. Thaxton JE, Romero R, Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J Immunol. 2009;183(2):1144–1154.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186(8):4794–4804.

    CAS  PubMed  Google Scholar 

  22. Yasuda K, Ogawa Y, Yamane I, Nishikawa M, Takakura Y. Macrophage activation by a DNA/cationic liposome complex requires endosomal acidification and TLR9-dependent and -independent pathways. J Leukoc Biol. 2005;77(1):71–79.

    CAS  PubMed  Google Scholar 

  23. Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature. 1990;347(6291):400–402.

    CAS  PubMed  Google Scholar 

  24. Sackesen C, van de Veen W, Akdis M, et al. Suppression of B-cell activation and IgE, IgA, IgGl and IgG4 production by mammalian telomeric oligonucleotides. Allergy. 2013;68(5):593–603.

    CAS  PubMed  Google Scholar 

  25. Shirota H, Gursel M, Klinman DM. Suppressive oligodeoxynucleotides inhibit Thl differentiation by blocking IFN-gamma-and IL-12-mediated signaling. J Immunol. 2004;173(8): 5002–5007.

    CAS  PubMed  Google Scholar 

  26. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745.

    CAS  PubMed  Google Scholar 

  27. Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374(6522): 546–549.

    CAS  PubMed  Google Scholar 

  28. Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev. 2008;60(7):795–804.

    CAS  PubMed  Google Scholar 

  29. Pisetsky DS, Reich CF. Inhibition of murine macrophage IL-12 production by natural and synthetic DNA. Clin Immunol. 2000; 96(3): 198–204.

    CAS  PubMed  Google Scholar 

  30. Dong L, Ito S, Ishii KJ, Klinman DM. Suppressive oligonucleotides protect against collagen-induced arthritis in mice. Arthritis Rheum. 2004;50(5): 1686–1689.

    CAS  PubMed  Google Scholar 

  31. Panter G, Kuznik A, Jerala R. Therapeutic applications of nucleic acids as ligands for Toll-like receptors. Curr Opin Mol Ther. 2009;11(2):133–145.

    CAS  PubMed  Google Scholar 

  32. Yasuda K, Yu P, Kirschning CJ, et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174(10):6129–6136.

    CAS  PubMed  Google Scholar 

  33. Norman JE, Bollapragada S, Yuan M, Nelson SM. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth. 2007;7(suppl 1):S7.

    PubMed  PubMed Central  Google Scholar 

  34. Edey LF, O’Dea KP, Herbert BR, et al. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse. Biol Reprod. 2016;95(6):125.

    PubMed  PubMed Central  Google Scholar 

  35. Takagi T, Hashiguchi M, Mahato RI, Tokuda H, Takakura Y, Hashida M. Involvement of specific mechanism in plasmid DNA uptake by mouse peritoneal macrophages. Biochem Biophys Res Commun. 1998;245(3):729–733.

    CAS  PubMed  Google Scholar 

  36. Krieg AM, Wu T, Weeratna R, et al. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA. 1998;95(21):12631–12636.

    CAS  PubMed  Google Scholar 

  37. Zeimer RA, Ishii KJ, Lizak MJ, et al. Reduction of CpG-induced arthritis by suppressive oligodeoxynucleotides. Arthritis Rheum. 2002;46(8):2219–2224.

    Google Scholar 

  38. Smith SC, Baker PN, Symonds EM. Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol. 1997;177(1): 57–65.

    CAS  Google Scholar 

  39. Smith SC, Baker PN. Placental apoptosis is increased in post-term pregnancies. Br J Obstet Gynaecol. 1999;106(8):861–862.

    CAS  PubMed  Google Scholar 

  40. McLaren J, Taylor DJ, Bell SC. Increased incidence of apoptosis in non-labour-affected cytotrophoblast cells in term fetal membranes overlying the cervix. Hum Reprod. 1999;14(11): 2895–900.

    CAS  PubMed  Google Scholar 

  41. Imaeda AB, Watanabe A, Sohail MA, et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009;119(2):305–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Watanabe A, Hashmi A, Gomes DA, et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology. 2007;46(5):1509–1518.

    CAS  PubMed  Google Scholar 

  43. Multani AS, Ozen M, Narayan S, et al. Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia. 2000;2(4):339–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nadeau-Vallee M, Obari D, et al. Sterile inflammation and pregnancy complications: a review. Reproduction. 2016;152(6): R277–R292.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Telefus Goldfarb MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldfarb, I.T., Adeli, S., Berk, T. et al. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition. Reprod. Sci. 25, 788–796 (2018). https://doi.org/10.1177/1933719117728798

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117728798

Keywords

Navigation