Skip to main content
Log in

Human Parturition: Nothing More Than a Delayed Menstruation

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Humans are one of the few mammalian viviparous species in which pregnancy is extended beyond the luteal phase, the phase during which progesterone is synthesized by the maternal ovary. Instead, it is the fetal placenta that produces progesterone throughout the latter 2 trimesters of human pregnancy. The placenta is developmentally crucial for reproductive success and is the most conspicuous anatomical novelty of placental mammals. However, before it can exert its dual functions as both an endocrine organ and an organ capable of facilitating gas and nutrient exchange, enormous changes must take place within the uterus to not only tolerate the presence of this hemiallogeneic tissue but to also accommodate and support placental development. The most dramatic of these changes is endometrial decidualization, the origin of which coincides in evolutionary history with invasive placentation. This article builds on the observation that the physiological changes that occur during the nonpregnant secretory phase of the uterine cycle in women are remarkably similar to that seen during pregnancy. The fundamental characteristics of human pregnancy (including endometrial decidualization followed several months later by intrauterine inflammation, uterine contractions, and discharge of the decidual lining from the uterine cavity) are present already in the nonpregnant menstrual cycle and are thus independent of the fetus. We hypothesize that many of the physiological defects that lead to complications during pregnancy and parturition are detectable already during spontaneous decidualization in the nonpregnant state and at the onset of menstruation, and can thus be determined before the onset of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csapo AI. Progesterone “block”. Am J Anat. 1956;98(2):273.

    CAS  PubMed  Google Scholar 

  2. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med. 1995;1(5):460–463.

    CAS  PubMed  Google Scholar 

  3. Kin K, Maziarz J, Chavan AR, et al. The transcriptomic evolution of mammalian pregnancy: gene expression innovations in endometrial stromal fibroblasts. Genome Biol Evol. 2016;8(8):2459–2473.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Norwitz ER, Bonney EA, Snegovskikh W, et al. Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harb Perspect Med. 2015;5(11): pii: a023143.

    Google Scholar 

  5. Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci U S A. 2006;103(9):3203–3208.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Samuel CA. The development of pig trophoblast in ectopic sites. J Reprod Fertil. 1971;27(3):494–495.

    CAS  PubMed  Google Scholar 

  7. Samuel CA, Perry JS. The ultrastructure of pig trophoblast transplanted to an ectopic site in the uterine wall. J Anat. 1972;113(pt 1):139–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gellersen B, Reimann K, Samalecos A, Aupers S, Bamberger AM. Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod. 2010;25(4):862–873.

    CAS  PubMed  Google Scholar 

  9. Teklenburg G, Salker M, Molokhia M, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PloS One. 2010;5(4):el0258.

    Google Scholar 

  10. Hirota Y, Daikoku T, Tranguch S, Xie HR, Bradshaw HB, Dey SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest. 2010;120(3):803–815.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cha J, Hirota Y, Dey SK. Sensing senescence in preterm birth. Cell Cycle. 2012;11(2):205–206.

    CAS  PubMed  Google Scholar 

  12. Lockwood CJ, Krikun G, Schatz F. The decidua regulates hemos-tasis in human endometrium. Semin Reprod Endocrinol. 1999;17(1):45–51.

    CAS  PubMed  Google Scholar 

  13. Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update. 2016;22(4):497–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Norwitz ER, Schust D, Fisher S. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–1408.

    CAS  PubMed  Google Scholar 

  15. Zhang XH, Liang X, Liang XH, et al. The mesenchymal-epithe-lial transition during in vitro decidualization. Reprod Sci. 2013;20(4):354–360.

    PubMed  PubMed Central  Google Scholar 

  16. Yu J, Berga SL. Johnston-MacAnanny EB, et al. Endometrial stromal decidualization responds reversibly to hormone stimulation and withdrawal. Endocrinology. 2016;157(6):2432–2446.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–1384.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Daftary GS, Taylor HS. Pleiotropic effects of HoxalO on the functional development of peri-implantation endometrium. Mol Reprod Dev. 2004;67(1):8–14.

    CAS  PubMed  Google Scholar 

  19. Franco HL, Dai D, Lee KY, et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25(4):1176–1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang H, Zhou Y, Edelshain B, Schatz F, Lockwood CJ, Taylor HS. FKBP4 is regulated by HOXA10 during decidualization and in endometriosis. Reproduction. 2012;143(4):531–538.

    CAS  PubMed  Google Scholar 

  21. Nnamani MC, Ganguly S, Erkenbrack EM, et al. A derived allos-teric switch underlies the evolution of conditional cooperativity betweenHOXAll andFOXOl. Cell Rep. 2016;15(10):2097–2108.

    CAS  PubMed  Google Scholar 

  22. Lynch VJ, Brayer K, Gellersen B, Wagner GP. HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: towards inferring the core transcriptional regulators of decidual genes. PloS One. 2009;4(9):e6845.

    PubMed  PubMed Central  Google Scholar 

  23. van der Horst CJ. Elephantulus going into anoestrus; menstruation and abortion. Philos Trans R Soc London Biol Sci. 1954;238:27–61.

    Google Scholar 

  24. Rasweiler JJ IV. Spontaneous decidual reactions and menstruation in the black mastiff bat, Molossus ater. Am J Anat. 1991;191(1):1–22.

    PubMed  Google Scholar 

  25. Rasweiler JJ IV, de Bonilla H. Menstruation in short-tailed fruit bats (Carollia spp.). J Reprod Fertil. 1992;95(1):231–248.

    PubMed  Google Scholar 

  26. Bellofiore N, Ellery SJ, Mamrot J, Walker DW. Temple-Smith P, Dickinson H. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol. 2017;216(1): 40.el-ell.

    Google Scholar 

  27. Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol. 2003;178(3):357–372.

    CAS  PubMed  Google Scholar 

  28. Emera D, Romero R, Wagner G. The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness. Bioessays. 2012;34(1):26–35.

    CAS  PubMed  Google Scholar 

  29. Flint AP, Ricketts AP. Control of placental endocrine function: role of enzyme activation in the onset of labour. J Steroid Biochem. 1979;11(1B):493–500.

    CAS  PubMed  Google Scholar 

  30. Boroditsky RS, Reyes FI, Winter JS, Faiman C. Maternal serum estrogen and progesterone concentrations preceding normal labor. Obstet Gynecol. 1978;51(6):686–691.

    CAS  PubMed  Google Scholar 

  31. Csapo AI, Pinto-Dantas CA. The effect of progesterone on the human uterus. Proc Natl Acad Sci U S A. 1965;54(4):1069–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mesiano S, Wang Y, Norwitz ER. Progesterone receptors in the human uterus: do they hold the key to the timing of labor? Reprod Sci. 2011;18(1):6–19.

    CAS  PubMed  Google Scholar 

  33. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vince GS, Starkey PM, Jackson MC, Sargent IL, Redman CW. Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J Immunol Methods. 1990;132(2):181–189.

    CAS  PubMed  Google Scholar 

  35. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–2086.

    CAS  PubMed  Google Scholar 

  36. Germeyer A, Sharkey AM, Prasadajudio M, et al. Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts. Mol Hum Reprod. 2009;15(1):39–48.

    CAS  PubMed  Google Scholar 

  37. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    CAS  PubMed  Google Scholar 

  38. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.

    CAS  PubMed  Google Scholar 

  39. Osman I, Young A, Jordan F, Greer IA, Norman JE. Leukocyte density and proinflammatory mediator expression in regional human fetal membranes and decidua before and during labor at term. JSoc Gynecol Invest. 2006;13(2):97–103.

    CAS  Google Scholar 

  40. Mitchell MD, Edwin S, Romero RJ. Prostaglandin biosynthesis by human decidual cells: effects of inflammatory mediators. Prostaglandins Leukot Essent Fatty Acids. 1990; 41(1):35–38.

    CAS  PubMed  Google Scholar 

  41. Norwitz ER, Lopez Bernal A, Starkey PM. Tumor necrosis factor-alpha selectively stimulates prostaglandin F2 alpha production by macrophages in human term decidua. Am J Obstet Gynecol. 1992;167(3):815–820.

    CAS  PubMed  Google Scholar 

  42. Marvin KW, Keelan JA, Eykholt RL, Sato TA, Mitchell MD. Use of cDNA arrays to generate differential expression profiles for inflammatory genes in human gestational membranes delivered at term and preterm. Mol Hum Reprod. 2002;8(4):399–408.

    CAS  PubMed  Google Scholar 

  43. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition: a review. Placenta. 2003;24(supp1 A):S33–S46.

    PubMed  Google Scholar 

  44. Kelly RW. Inflammatory mediators and parturition. Rev Reprod. 1996;1(2):89–96.

    CAS  PubMed  Google Scholar 

  45. Challis JR, Lye SJ, Gibb W. Prostaglandins and parturition. Ann N YAcad Sci. 1997;828:254–267.

    CAS  Google Scholar 

  46. Roizen JD, Asada M, Tong M, Tai HH, Muglia LJ. Preterm birth without progesterone withdrawal in 15-hydroxyprostaglandin dehydrogenase hypomorphic mice. Mol Endocrinol. 2008;22(1):105–112.

    CAS  PubMed  Google Scholar 

  47. Winkler M, Fischer DC, Ruck P, et al. Parturition at term: parallel increases in interleukin-8 and proteinase concentrations and neutrophil count in the lower uterine segment. Hum Reprod. 1999;14(4):1096–1100.

    CAS  PubMed  Google Scholar 

  48. Weiss A, Goldman S, Shalev E. The matrix metalloproteinases (MMPs) in the decidua and fetal membranes. Front Biosci. 2007;12:649–59.

    CAS  PubMed  Google Scholar 

  49. Maymon E, Romero R, Pacora P, et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. J Perinat Med. 2001;29(4):308–316.

    CAS  PubMed  Google Scholar 

  50. Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. 2009;23(7):947–954.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pringle KG, Kind KL. Sferruzzi-Perri AN, Thompson JG, Roberts CT. Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update. 2010;16(4):415–431.

    CAS  PubMed  Google Scholar 

  52. Mittal P, Romero R, Tarca AL, et al. A molecular signature of an arrest of descent in human parturition. Am J Obstet Gynecol. 2011;204(2):177.e15-e33.

    Google Scholar 

  53. Chaemsaithong P, Madan I, Romero R, et al. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med. 2013;41(6):665–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alotaibi M, Arrowsmith S, Wray S. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses. Proc Natl Acad Sci U S A. 2015;112(31):9763–9768.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bugg GJ, Riley MJ, Johnston TA, Baker PN, Taggart MJ. Hypoxic inhibition of human myometrial contractions in vitro: implications for the regulation of parturition. Eur J Clin Invest. 2006;36(2):133–140.

    CAS  PubMed  Google Scholar 

  56. Critchley HO, Kelly RW, Brenner RM, Baird DT. The endocrinology of menstruation: a role for the immune system. Clin Endocrinol (Oxf). 2001;55(6):701–710.

    CAS  Google Scholar 

  57. Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1):17–46.

    CAS  PubMed  Google Scholar 

  58. Maybin JA, Critchley HO. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update. 2015;21(6):748–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kelly RW, King AE, Critchley HO. Cytokine control in human endometrium. Reproduction. 2001;121(1):3–19.

    CAS  PubMed  Google Scholar 

  60. Jones RL, Hannan NJ, Kaitu’u TJ, Zhang J, Salamonsen LA. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab. 2004;89(12):6155–6167.

    CAS  PubMed  Google Scholar 

  61. King AE, Critchley HO, Kelly RW. The NF-kappaB pathway in human endometrium and first trimester decidua. Mol Hum Reprod. 2001;7(2):175–183.

    CAS  PubMed  Google Scholar 

  62. Jones RL, Kelly RW, Critchley HO. Chemokine and cyclooxygenase-2 expression in human endometrium coincides with leukocyte accumulation. Hum Reprod. 1997;12(6):1300–1306.

    CAS  PubMed  Google Scholar 

  63. Hayes EC, Rock JA. COX-2 inhibitors and their role in gynecology. Obstet Gynecol Surv. 2002;57(11):768–780.

    PubMed  Google Scholar 

  64. Ylikorkala O, Makila UM. Prostacyclin and thromboxane in gynecology and obstetrics. Am J Obstet Gynecol. 1985;152(3):318–329.

    CAS  PubMed  Google Scholar 

  65. Royds JA, Dower SK, Qwarnstrom EE, Lewis CE. Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol. 1998;51(2):55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Salamonsen LA, Lathbury LJ. Endometrial leukocytes and menstruation. Hum Reprod Update. 2000;6(1):16–27.

    CAS  PubMed  Google Scholar 

  67. Irwin JC, Kirk D, Gwatkin RB, Navre M, Cannon P, Giudice LC. Human endometrial matrix metalloproteinase-2, a putative menstrual proteinase. Hormonal regulation in cultured stromal cells and messenger RNA expression during the menstrual cycle. J Clin Invest. 1996;97(2):438–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schatz F, Krikun G, Runic R, Wang EY, Hausknecht V, Lock-wood CJ. Implications of decidualization-associated protease expression in implantation and menstruation. Semin Reprod Endocrinol. 1999;17(1):3–12.

    CAS  PubMed  Google Scholar 

  69. Lockwood CJ, Krikun G, Hausknecht VA, Papp C, Schatz F. Matrix metalloproteinase and matrix metalloproteinase inhibitor expression in endometrial stromal cells during progestin-initiated decidualization and menstruation-related progestin withdrawal. Endocrinology. 1998;139(11):4607–4613.

    CAS  PubMed  Google Scholar 

  70. Youssef AF. The uterine isthmus and its sphincter mechanism, a radiographic study. I. The uterine isthmus under normal conditions. Am J Obstet Gynecol. 1958;75(6):1305–1319.

    CAS  PubMed  Google Scholar 

  71. Nott JP, Bonney EA, Pickering JD. Simpson NAB. The structure and function of the cervix during pregnancy. Translational Res Anat. 2016;2:1–7.

    Google Scholar 

  72. Myatt L, Sun K. Role of fetal membranes in signaling of fetal maturation and parturition. Int J Dev Biol. 2010;54(2-3):545–553.

    CAS  PubMed  Google Scholar 

  73. Menon R. Human fetal membranes at term: dead tissue or signalers of parturition? Placenta. 2016;44:1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramsey EM. The Placenta: Human and Animal. New York, NY: Praeger; 1982: xii, 187.

    Google Scholar 

  75. Carter AM. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev. 2012;92(4):1543–1576.

    CAS  PubMed  Google Scholar 

  76. Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat Ecol Evol. 2017;1: doi:101038/s41559-017-0072.

  77. Sandman CA, Glynn L, Schetter CD, et al. Elevated maternal Cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): priming the placental clock. Peptides. 2006;27(6):1457–1463.

    CAS  PubMed  Google Scholar 

  78. Pavlicev M, Wagner GP, Chavan AR, et al. Single-cell transcrip-tomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 2017;27(6):349–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang QL, Wang WS, Liu C, Wang Y, Sun K. Compartmentalized localization of 11 beta-HSD 1 and 2 at the feto-maternal interface in the first trimester of human pregnancy. Placenta. 2016;46:63–71.

    CAS  PubMed  Google Scholar 

  80. Funghi L, Damiani F, Yen CF, et al. Expression and regulation of 1 lbeta-hydroxysteroid dehydrogenase type 1 in first trimester human decidua cells: implication in preeclampsia. Mol Cell Endocrinol. 2016;437:163–170.

    CAS  PubMed  Google Scholar 

  81. Norwitz ER. Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online. 2006;13(4):591–599.

    CAS  PubMed  Google Scholar 

  82. Romero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG. 2006;113(suppl 3):S17–S42.

    Google Scholar 

  83. Rabaglino MB, Post Uiterweer ED, Jeyabalan A, Hogge WA, Conrad KP. Bioinformatics approach reveals evidence for impaired endometrial maturation before and during early pregnancy in women who developed preeclampsia. Hypertension. 2015;65(2):421–429.

    CAS  PubMed  Google Scholar 

  84. Giaglis S, Stoikou M, Grimolizzi F, et al. Neutrophil migration into the placenta: good, bad or deadly? Cell Adh Migr. 2016;10(1-2):208–225.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Errol R. Norwitz MD, PhD, MBA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlicev, M., Norwitz, E.R. Human Parturition: Nothing More Than a Delayed Menstruation. Reprod. Sci. 25, 166–173 (2018). https://doi.org/10.1177/1933719117725830

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725830

Keywords

Navigation