Skip to main content
Log in

Follistatin Rescues Blastocyst Development of Poor Quality Porcine Cumulus-Oocyte Complexes by Delaying Meiotic Resumption With Decreased cGMP

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Mammalian oocytes resume maturation when removed from follicles and cultured in vitro. During folliculogenesis, oocytes are bathed in follicular fluid (FF), which provides an important and specialized microenvironment for oocyte competence. Follistatin (FST) is one component of FF that may play a role in oocyte maturation and embryo development. This study was conducted to examine possible effects of FST on porcine oocyte competence and embryo development. Exogenous FST in oocyte maturation medium for 22 or 44 hours did not improve nuclear maturation and had no effect on good quality cumulus-oocyte complexes (COCs). However, FST improved blastocyst rates in embryos derived from oocytes with less than 2 layers of cumulus. Follistatin treatment of the poor quality COC group increased transcript levels for genes indicative of oocyte quality. Transcript levels were also altered for cumulus expansion-related genes in response to FST when measured during the germinal vesicle breakdown stage. Interestingly, high-quality oocytes remained at germinal vesicle stage much longer than low-quality oocytes, FST treatment induced temporary blockage of spontaneous meiotic resumption when added during culture of both good and poor quality COCs, and levels of cyclic guanosine monophosphate (cGMP) were higher in FST-treated versus untreated groups for both good and poor quality oocytes. In conclusion, FST treatment of porcine oocytes during in vitro maturation can rescue competency of poor quality oocytes to develop to blastocyst stage following in vitro fertilization. Beneficial effects of addition of FST to culture medium may be mediated by inhibiting degradation of cGMP and temporarily delaying nuclear maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–177.

    Article  CAS  PubMed  Google Scholar 

  2. Scaramuzzi RJ, Baird DT, Campbell BK, et al. Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev. 2011;23(3):444–467.

    Article  CAS  PubMed  Google Scholar 

  3. Gerard N, Loiseau S, Duchamp G, Seguin F. Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR). Reproduction. 2002;124(2):241–248.

    Article  CAS  PubMed  Google Scholar 

  4. Pinero-Sagredo E, Nunes S, de Los Santos MJ, Celda B, Esteve V. NMR metabolic profile of human follicular fluid. NMR Biomed. 2010;23(5):485–495.

    CAS  PubMed  Google Scholar 

  5. Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13(3):289–312.

    Article  CAS  PubMed  Google Scholar 

  6. Veitch GI, Gittens JE, Shao Q, Laird DW, Kidder GM. Selective assembly of connexin37 into heterocellular gap junctions at the oocyte/granulosa cell interface. J Cell Sci. 2004;117(pt 13): 2699–2707.

    Article  CAS  PubMed  Google Scholar 

  7. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–838.

    Article  CAS  PubMed  Google Scholar 

  8. Norris RP, Ratzan WJ, Freudzon M, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136(11):1869–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitaker M. Calcium at fertilization and in early development. Physiol Rev. 2006;86(1):25–88.

    Article  CAS  PubMed  Google Scholar 

  10. Lin SY, Morrison JR, Phillips DJ, de Kretser DM. Regulation of ovarian function by the TGF-beta superfamily and follistatin. Reproduction. 2003;126(2):133–148.

    Article  CAS  PubMed  Google Scholar 

  11. Kaivo-oja N, Jeffery LA, Ritvos O, Mottershead DG. Smad sig-nalling in the ovary. Reprod Biol Endocrinol. 2006;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trombly DJ, Woodruff TK, Mayo KE. Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med. 2009;27(1): 14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pangas SA. Regulation of the ovarian reserve by members of the transforming growth factor beta family. Mol Reprod Dev. 2012; 79(10):666–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otsuka F, McTavish KJ, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 2011;78(1): 9–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haisenleder DJ, Aylor KW, Burger LL, Dalkin AC, Marshall JC. Stimulation of FSHbeta transcription by blockade of endogenous pituitary follistatin production: Efficacy of adenoviral-delivered antisense RNA in the rat. Endocrine. 2006;29(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  16. Patel OV, Bettegowda A, Ireland JJ, Coussens PM, Lonergan P, Smith GW. Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes. Reproduction. 2007;133(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  17. Lee KB, Bettegowda A, Wee G, Ireland JJ, Smith GW. Molecular determinants of oocyte competence: potential functional role for maternal (oocyte-derived) follistatin in promoting bovine early embryogenesis. Endocrinology. 2009;150(5):2463–2471.

    Article  CAS  PubMed  Google Scholar 

  18. VandeVoort CA, Mtango NR, Lee YS, Smith GW, Latham KE. Differential effects of follistatin on nonhuman primate oocyte maturation and pre-implantation embryo development in vitro. Biol Reprod. 2009;81(6):1139–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330(6002):366–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krisher RL. The effect of oocyte quality on development. JAnim Sci. 2004;82(E-suppl): E14–E23.

    Google Scholar 

  21. Wigglesworth K, Lee KB, O’ Brien MJ, Peng J, Matzuk MM, Eppig JJ. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci USA. 2013;110(39): E3723–3729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–353.

    Article  CAS  PubMed  Google Scholar 

  23. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and invito environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  24. Sutton-McDowall ML, Gilchrist RB, Thompson JG. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction. 2004;128(3): 313–319.

    Article  CAS  PubMed  Google Scholar 

  25. Luciano AM, Pocar P, Milanesi E, et al. Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization. Mol Reprod Dev. 1999;54(1):86–91.

    Article  CAS  PubMed  Google Scholar 

  26. Ponderato N, Crotti G, Turini P, Duchi R, Galli C, Lazzari G. Embryonic and foetal development of bovine oocytes treated with a combination of butyrolactone I and roscovitine in an enriched medium prior to IVM and IVF. Mol Reprod Dev. 2002;62(4): 513–518.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas RE, Armstrong DT, Gilchrist RB. Bovine cumulus cell-oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3’,5’-monophosophate levels. Biol Reprod. 2004; 70(3):548–556.

    Article  CAS  PubMed  Google Scholar 

  28. Combelles CM, Cekleniak NA, Racowsky C, Albertini DF. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum Reprod. 2002;17(4):1006–1016.

    Article  CAS  PubMed  Google Scholar 

  29. Li JJ, Sugimura S, Mueller TD, et al. Modifications of human growth differentiation factor 9 to improve the generation of embryos from low competence oocytes. Mol Endocrinol. 2015; 29(1):40–52.

    Article  PubMed  Google Scholar 

  30. Yeo CX, Gilchrist RB, Thompson JG, Lane M. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod. 2008;23(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  31. Robertson DM. Follistatin/activin-binding protein. Trends Endocrinol Metab. 1992;3(2):65–68.

    Article  CAS  PubMed  Google Scholar 

  32. Otsuka F, Moore RK, Iemura S, Ueno N, Shimasaki S. Follistatin inhibits the function of the oocyte-derived factor BMP-15. Biochem Biophys Res Commun. 2001;289(5):961–966.

    Article  CAS  PubMed  Google Scholar 

  33. Duggal G, Heindryckx B, Warrier S, et al. Exogenous supple-mentation of Activin A enhances germ cell differentiation of human embryonic stem cells. Mol Hum Reprod. 2015;21(5): 410–423.

    Article  CAS  PubMed  Google Scholar 

  34. Hammami S, Izquierdo D, Catala MG, Paramio MT, Morato R. In vitro developmental competence of prepubertal goat oocytes cul-tured with recombinant activin-A. Animal. 2014;8(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Liang X, Jiang XH. The effects of activin A and inhibin A on the IVM of mice immature oocytes [in Chinese]. Sichuan Da XueXueBao YiXue Ban. 2012;43(3):348–351.

    CAS  Google Scholar 

  36. Pang Y, Ge W. Activin stimulation of zebrafish oocyte maturation in vitro and its potential role in mediating gonadotropin-induced oocyte maturation. Biol Reprod. 1999;61(4):987–992.

    Article  CAS  PubMed  Google Scholar 

  37. Lee KB, Zhang K, Folger JK, Knott JG, Smith GW. Evidence supporting a functional requirement of SMAD4 for bovine pre-implantation embryonic development: a potential link to embry-otrophic actions of follistatin. Biol Reprod. 2014;91(3):62.

    PubMed  PubMed Central  Google Scholar 

  38. Zhang K, Rajput SK, Lee KB, et al. Evidence supporting a role for SMAD2/3 in bovine early embryonic development: potential implications for embryotropic actions of follistatin. Biol Reprod. 2015;93(4):86.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ashry M, Lee K, Mondal M, et al. Expression of TGFbeta superfamily components and other markers of oocyte quality in oocytes selected by brilliant cresyl blue staining: relevance to early embryonic development. Mol Reprod Dev. 2015;82(3): 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aim H, Torner H, Lohrke B, Viergutz T, Ghoneim IM, Kanitz W. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brilliant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology. 2005;63(8):2194–2205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Bon Lee PhD or Min Kyu Kim PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.M., Chun, J.L., Lee, J.H. et al. Follistatin Rescues Blastocyst Development of Poor Quality Porcine Cumulus-Oocyte Complexes by Delaying Meiotic Resumption With Decreased cGMP. Reprod. Sci. 25, 759–772 (2018). https://doi.org/10.1177/1933719117725829

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725829

Keywords

Navigation