Skip to main content
Log in

Correlation Between Placental Matrix Metalloproteinase 9 and Tumor Necrosis Factor-α Protein Expression Throughout Gestation in Normal Human Pregnancy

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs), specifically MMP-9 plays a role in human placentation. The enzyme confers an invasive ability to cytotrophoblasts and degrades the endometrial matrix as the cells infiltrate the decidua to keep up with placental growth. Since tumor necrosis factor-α (TNF-α) can induce the synthesis of MMP-9, we investigated the patterns of changes in and correlation between placental villous MMP-9 and TNF-α expressions throughout normal human gestation. Placentas were obtained from 179 normal pregnant women who underwent elective abortion or term delivery. Chorionic villi isolated from placental samples were grouped as first, second, and third trimester (70/7-130/7, 131/7-236/7, and 370/7-424/7 weeks, respectively). Chorionic villous TNF-α and MMP-9 proteins were assayed using enzyme immunoassay kits. There were significant differences in MMP-9 and TNF-α protein expressions among the trimester groups (P =.001). The MMP-9 protein increased progressively with an increase in gestational age (GA), but TNF-α peaked in the second trimester. Within each trimester group, we searched for the effects of variation of GA in days on the 2 variables. A significant positive correlation between MMP-9 and GA was noted in the first trimester (r = 0.364, P =.005). No other comparisons were significant. When GA was controlled for, partial correlation revealed a significant positive correlation between TNF-α and MMP-9 only in the second trimester (r = 0.300, P =.018). We hypothesize that the TNF-α peak and the positive correlation between TNF-a and MMP-9 in the second trimester of normal human gestation could contribute toward a successful pregnancy outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iwahashi M, Muragaki Y, Ooshima A, Yamoto M, Nakano R. Alterations in distribution and composition of the extracellular matrix during decidualization of the human endometrium. J Reprod Fertil. 1996;108(1):147–155.

    CAS  PubMed  Google Scholar 

  2. Matrisian LM, Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990;6(4):121–125.

    CAS  PubMed  Google Scholar 

  3. Huppertz B, Kertschanska S, Demir AY, Frank HG, Kaufmann P. Immunohistochemistry of matrix metalloproteinase (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the placenta. Cell Tissue Res. 1998;291(1):133–148.

    CAS  PubMed  Google Scholar 

  4. Cohen M, Meisser A, Bischof P. Metalloproteinases and human placental invasiveness. Placenta. 2006;27(8):783–793.

    CAS  PubMed  Google Scholar 

  5. Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3(1):27–45.

    CAS  PubMed  Google Scholar 

  6. Librach CL, Werb Z, Fitzgerald ML, et al. 92-kDa type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol. 1991;113(2):437–449.

    CAS  PubMed  Google Scholar 

  7. Meisser A, Chardonnens D, Campana A, Bischof P. Effects of tumor necrosis factor-a, interleukin-1 a, macrophage colony stimulating factor and transforming growth factor P on trophoblastic matrix metalloproteinases. Mol Human Reprod. 1999;5(3):252–260.

    CAS  Google Scholar 

  8. Cohen M, Meisser A, Haenggeli L, Bischof P. Involvement of MAPK pathway in TNF-a induced MMP-9 expression in human trophoblastic cells. Mol Hum Reprod. 2006;12(4):225–232.

    CAS  PubMed  Google Scholar 

  9. Basu J, Agamasu E, Bendek B, et al. Placental tumor necrosis factor-a protein expression during normal human gestation. JMatern Fetal Neonatal Med. 2016;29(24):3934–3938.

    CAS  Google Scholar 

  10. Xu P, Wang YL, Zhu SJ, Lou SY, Piao YS, Zhuang LZ. Expression of matrix metalloproteinase 2, -9 and -14, tissue inhibitors and metalloproteinase-1, and matrix proteins in human placenta during the first trimester. Biol Reprod. 2000;62(4):988–994.

    CAS  PubMed  Google Scholar 

  11. Shimonovitz S, Hurwitz A, Dushnik M, Anteby E, Geva-Eldar T, Yagel S. Developmental regulation of the expression of 72 and 92 kd type IV collagenases in human trophoblasts: a possible mechanism for control of trophoblast invasion. Am J Obstet Gynecol. 1994;171(3):832–838.

    CAS  PubMed  Google Scholar 

  12. Watari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF. Proinflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol. 1999;154(6):1755–1762.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haider S., Knöfler M. Human tumor necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta. 2009;30(2):111–123.

    CAS  PubMed  Google Scholar 

  14. Plaks V, Rinkenberger J, Dai J, et al. Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. Proc Natl Acad Sci USA. 2013;110(27):11109–11114.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vince G, Shorter S, Starkey P, et al. Localization of tumor necrosis factor production in cells at the materno/fetal interface in human pregnancy. Clin Exp Immunol. 1992;88(1):174–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chow SS, Craig ME, Jones CA, et al. Differences in amniotic fluid and maternal serum cytokine levels in early midtrimester women without evidence of infection. Cytokine. 2008;44(1):78–84.

    CAS  PubMed  Google Scholar 

  17. Ulug U, Goldman S, Ben-Shlomo I, Shalev E. Matrix metalloproteinase (MMP)-2 and MMP-9 and their inhibitor, TIMP-1, in human term decidua and fetal membranes: the effect of prostaglandins F(2alpha) and indomethacin. Mol Human Reprod. 2001;7(12):1187–1193.

    CAS  Google Scholar 

  18. Vassilliou E, Jing H, Ganea D. Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell Immunol. 2003;223(2):120–132.

    Google Scholar 

  19. Frankowski H, Gu YH, Heo JH, Milner R, del Zoppo GJ. Use of zel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol Biol. 2012;814:221–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Graham CH, Lala PK. Mechanism of control of trophoblast invasion in situ. J Cell Physiol. 1991;148(2):228–234.

    CAS  PubMed  Google Scholar 

  21. Burton GJ, Jauniaux E, Watson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181(3):718–724.

    CAS  PubMed  Google Scholar 

  22. Basu J, Bendek B, Agamasu E, et al. Placental oxidative status throughout normal gestation in women with uncomplicated pregnancies. Obstet Gynecol Int. 2015;2015:276095.

    PubMed  PubMed Central  Google Scholar 

  23. Cindrova-Davies T, Spasic-Boskovic O, Jauniaux E, Charnock-Jones DS, Burton GJ. Nuclear factor-kB, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress. Am J Pathol. 2007;170(5):1511–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pijnenborg R, Dixon G, Robertson WB, Brosens I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta. 1980;1(1):3–19.

    CAS  PubMed  Google Scholar 

  25. Pasterkamp G, de Kleijn DPV, Borst C. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc Res. 2000;45(4):843–852.

    CAS  PubMed  Google Scholar 

  26. Myatt L. Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta. 2010;31(suppl):S66–S69.

    PubMed  PubMed Central  Google Scholar 

  27. Douglas RM, Haddad GG. Genetic models in applied physiology: Invited review: Effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest. J Appl Physiol. 2003; 94(5):2068–2083.

    CAS  PubMed  Google Scholar 

  28. Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983;4(4):397–413.

    CAS  PubMed  Google Scholar 

  29. Brosens I, Robertson WB, Dixon HG. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol. 1967;93(2):569–579.

    CAS  PubMed  Google Scholar 

  30. Keogh RJ, Harris LK, Freeman A, et al. Fetal-derived trophoblast use the apoptotic cytokine tumor necrosis factor-a-related apoptosis-inducing ligand to induce smooth muscle cell death. CircRes. 2007;100(6):834–841.

    CAS  Google Scholar 

  31. Whitley GS, Cartwright JE. Trophoblast-mediated spiral artery remodelling: a role for apoptosis. J Anat. 2009;215(1):21–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Thaler I, Manor D, Itskovitz J, et al. Changes in uterine blood flow during pregnancy. Am J Obstet Gynecol. 1990;162(1):121–125.

    CAS  PubMed  Google Scholar 

  33. Kim YM, Bujold E, Chaiworapongsa T, et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gyneol. 2003;189(4):1063–1069.

    Google Scholar 

  34. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9-10):939–958.

    CAS  PubMed  Google Scholar 

  35. Khong TY, De Wolf F, Robertson WB, Bronsen I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93(10):1049–1059.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayasri Basu PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, J., Agamasu, E., Bendek, B. et al. Correlation Between Placental Matrix Metalloproteinase 9 and Tumor Necrosis Factor-α Protein Expression Throughout Gestation in Normal Human Pregnancy. Reprod. Sci. 25, 621–627 (2018). https://doi.org/10.1177/1933719117725819

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725819

Keywords

Navigation