Skip to main content

Advertisement

Log in

Impact of Galectin-I on Trophoblast Stem Cell Differentiation and Invasion in In Vitro Implantation Model

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Trophoblast stem cells (TSCs) differentiate in an orderly manner, which plays an important role in the process of embryo implantation, placentation, and early pregnancy maintenance. At the maternal-fetal interface, the dialogue is crucial between trophoblast cells and endometrial epithelial cells. Previous studies suggested that galectin-I (Gal-I) may play an important role in placental development. In this study, we used Ishikawa (IK) cells-TSC coculture model to simulate the maternal-fetal interface and induce the differentiation of TSCs by differentiation media. The messenger RNA level of each cell type markers, fusion markers, and Gal-I was detected by quantitative reverse transcription polymerase chain reaction during the differentiation of TSCs. Wound healing and transwell invasion assays were used to detect the migration and invasion ability in each group. We found that coculture with IK cells or conditioned media from IK cells could promote the differentiation and invasion of TSCs and increase Gal-I expression in TSCs. Furthermore, recombinant Gal-I could also promote the differentiation and invasion of TSCs, suggesting that some of IK cells secretion increase the expression of Gal-I in TSCs during implantation, which then induced trophoblast differentiation and invasion in vitro. These findings provide significant insights into the biology of embryo-maternal interactions with the importance of Gal-I in TSCs for the successful establishment and maintenance of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science. 2002;296(5576): 2185–2188.

    CAS  PubMed  Google Scholar 

  2. Red-Horse K, Zhou Y, Genbacev O, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114(6):744–754.

    CAS  PubMed  Google Scholar 

  3. Roberts RM, Fisher SJ. Trophoblast stem cells. Biol Reprod. 2011;84(3):412–421.

    CAS  PubMed  Google Scholar 

  4. Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol. 2008;322(1):1–10.

    CAS  PubMed  Google Scholar 

  5. Barondes SH, Cooper DN, Girt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269(33):20807–20810.

    CAS  PubMed  Google Scholar 

  6. Cooper DN. Galectinomics: finding themes in complexity. Biochim Biophys Acta. 2002;1572(2–3):209–231.

    CAS  PubMed  Google Scholar 

  7. Hughes RC. Galectins as modulators of cell adhesion. Biochimie. 2001;83(7):667–676.

    CAS  PubMed  Google Scholar 

  8. Raz A, Lotan R. Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev. 1987;6(3):433–452.

    CAS  PubMed  Google Scholar 

  9. Wells V, Mallucci L. Identification of an autocrine negative growth factor: mouse beta-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell. 1991;64(1):91–97.

    CAS  PubMed  Google Scholar 

  10. Adams L, Scott GK, Weinberg CS. Biphasic modulation of cell growth by recombinant human galectin-1. Biochim Biophys Acta. 1996;1312(2):137–144.

    PubMed  Google Scholar 

  11. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature. 1995;378(6558):736–739.

    CAS  PubMed  Google Scholar 

  12. Vicovac L, Jankovic M, Cuperlovic M. Galectin-1 and -3 in cells of the first trimester placental bed. Hum Reprod. 1998;13(3): 730–735.

    CAS  PubMed  Google Scholar 

  13. Maquoi E, van den Brule FA, Castronovo V, Foidart JM. Changes in the distribution pattern of galectin-1 and galectin-3 in human placenta correlates with the differentiation pathways of tropho-blasts. Placenta. 1997;18(5–6):433–439.

    CAS  PubMed  Google Scholar 

  14. von Wolff M, Wang X, Gabius HJ, Strowitzki T. Galectin finger-printing in human endometrium and decidua during the menstrual cycle and in early gestation. Mol Hum Reprod. 2005;11(3): 189–194.

    Google Scholar 

  15. Bozic M, Petronijevic M, Milenkovic S, Atanackovic J, Lazic J, Vicovac L. Galectin-1 and galectin-3 in the trophoblast of the gestational trophoblastic disease. Placenta. 2004;25(10):797–802.

    CAS  PubMed  Google Scholar 

  16. Kolundzic N, Bojic-Trbojevic Z, Kovacevic T, Stefanoska I, Kadoya T, Vicovac L. Galectin-1 is part of human trophoblast invasion machinery-a functional study in vitro. PLoS One. 2011;6(12):e28514.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Walzel H, Blach M, Hirabayashi J, Kasai KI, Brock J. Involve-ment of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology. 2000;10(2):131–140.

    CAS  PubMed  Google Scholar 

  18. Blois SM, Ilarregui JM, Tometten M, et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med. 2007;13(12): 1450–7.

    CAS  PubMed  Google Scholar 

  19. Jeschke U, KarstenU, Wiest I, et al. Binding of galectin-1 (gal-1) to the Thomsen-Friedenreich (TF) antigen on trophoblast cells and inhibition of proliferation of trophoblast tumor cells in vitro by gal-1 or an anti-TF antibody. Histochem Cell Biol. 2006; 126(4):437–444.

    CAS  PubMed  Google Scholar 

  20. Liu AX, Jin F, Zhang WW, et al. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod. 2006;75(3):414–420.

    CAS  PubMed  Google Scholar 

  21. Tirado-Gonzalez I, Freitag N, Barrientos G, et al. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol Hum Reprod. 2011; 19(1):43–53.

    Google Scholar 

  22. Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines?. Biol Reprod. 2010;82(2):235–245.

    CAS  PubMed  Google Scholar 

  23. Nishida M, Kasahara K, Kaneko M, Iwasaki H, Hayashi K. Estab-lishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors [in Japanese]. Nihon Sanka Fujinka Gakkai Zasshi. 1985;37(7): 1103–1111.

    CAS  PubMed  Google Scholar 

  24. Heneweer C, Schmidt M, Denker HW, Thie M. Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells. J Exp Clin Assist Reprod. 2005;2(1):4.

    PubMed  PubMed Central  Google Scholar 

  25. Castelbaum AJ, Ying L, Somkuti SG, Sun J, Ilesanmi AO, Lessey BA. Characterization of integrin expression in a well differentiated endometrial adenocarcinoma cell line (Ishikawa). J Clin Endocrinol Metab. 1997;82(1):136–142.

    CAS  PubMed  Google Scholar 

  26. Simmons DG, Fortier AL, Cross JC. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol. 2007;304(2):567–578.

    CAS  PubMed  Google Scholar 

  27. Coan PM, Conroy N, Burton GJ, Ferguson-Smith AC. Origin and characteristics of glycogen cells in the developing murine placenta. Dev Dyn. 2006;235(12):3280–3294.

    CAS  PubMed  Google Scholar 

  28. Anson-Cartwright L, Dawson K, Holmyard D, Fisher SJ, Lazzarini RA, Cross JC. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet. 2000;25(3):311–314.

    CAS  PubMed  Google Scholar 

  29. Simmons DG, Natale DR, Begay V, Hughes M, Leutz A, Cross JC. Early patterning of the chorion leads to the trilaminar tropho-blast cell structure in the placental labyrinth. Development. 2008; 135(12):2083–2091.

    CAS  PubMed  Google Scholar 

  30. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N EnglJ Med. 2001; 345(19): 1400–1408.

    CAS  Google Scholar 

  31. Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011; 17(2):242–253.

    CAS  PubMed  Google Scholar 

  32. Gellersen B, Reimann K, Samalecos A, et al. Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod. 2010;25(4): 862–73.

    CAS  PubMed  Google Scholar 

  33. Kimber SJ, Spanswick C. Blastocyst implantation: the adhesion cascade. Semin Cell Dev Biol. 2000;11(2):77–92.

    CAS  PubMed  Google Scholar 

  34. Bischof P, Campana A. A model for implantation of the human blastocyst and early placentation. Hum Reprod Update. 1996; 2(3):262–270.

    CAS  PubMed  Google Scholar 

  35. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–199.

    PubMed  Google Scholar 

  36. Aplin JD, Kimber SJ. Trophoblast-uterine interactions at implantation. Reprod Biol Endocrinol. 2004;2:48.

    PubMed  PubMed Central  Google Scholar 

  37. Ai Z, Jing W, Fang L. Cytokine-like protein 1 (Cytll): a potential molecular mediator in embryo implantation. PLoS One. 2016; 11(1):e147424.

    Google Scholar 

  38. Atwood CS, Vadakkadath MS. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol. 2016;430:33-48.

    CAS  PubMed  Google Scholar 

  39. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Sci-ence. 1998;282(5396):2072–2075.

    CAS  Google Scholar 

  40. Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nat Rev Genet. 2001;2(7):538–548.

    CAS  PubMed  Google Scholar 

  41. Georgiadis V, Stewart HJ, Pollard HJ, et al. Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev Dyn. 2007;236(4): 1014–1024.

    CAS  PubMed  Google Scholar 

  42. Yang M, Lei ZM, Rao Ch V. The central role of human chorionic gonadotropin in the formation of human placental syncytium. Endocrinology. 2003;144(3):1108–11020.

    CAS  PubMed  Google Scholar 

  43. Douglas GC, King BF. Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J Cell Sci 1990;96(pt 1):131–141.

    PubMed  Google Scholar 

  44. Stepan H, Faber R, Dornhofer N, Huppertz B, Robitzki A, Walther T. New insights into the biology of preeclampsia. Biol Reprod. 2006;74(5):772–776.

    CAS  PubMed  Google Scholar 

  45. George EM, Granger JP. Recent insights into the pathophysiology of preeclampsia. Expert Rev Obstet Gynecol. 2010;5(5): 557–566.

    PubMed  PubMed Central  Google Scholar 

  46. Zhang D, Lv P, Zhang R, et al. A new model for embryo implan-tation: coculture of blastocysts and Ishikawa cells. Gynecol Endocrinol. 2012;28(4):288–292.

    CAS  PubMed  Google Scholar 

  47. Kaneko Y, Day ML, Murphy CR. Integrin beta3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection. Hum Reprod. 2011;26(7):1665–1674.

    CAS  PubMed  Google Scholar 

  48. Dwek RA. Glycobiology: more functions for oligosaccharides. Science. 1995;269(5228):1234–1235.

    CAS  PubMed  Google Scholar 

  49. Yamaoka K, Ohno S, Kawasaki H, Suzuki K. Overexpression of a beta-galactoside binding protein causes transformation of BALB3T3 fibroblast cells. Biochem Biophys Res Commun. 1991;179(1):272–279.

    CAS  PubMed  Google Scholar 

  50. Fischer I, Redel S, Hofmann S, et al. Stimulation of syncytium formation in vitro in human trophoblast cells by galectin-1. Placenta. 2010;31(9):825–832.

    CAS  PubMed  Google Scholar 

  51. James JL, Stone PR, Chamley LW. Cytotrophoblast differentiation in the first trimester of pregnancy: evidence for separate progenitors of extravillous trophoblasts and syncytiotrophoblast. Reproduction. 2005;130(1):95–103.

    CAS  PubMed  Google Scholar 

  52. Bevan BH, Kilpatrick DC, Liston WA, Hirabayashi J, Kasai K. Immunohistochemical localization of a beta-D-galactoside-binding lectin at the human maternofetal interface. Histochem J. 1994;26(7):582–586.

    CAS  PubMed  Google Scholar 

  53. Lessey BA. The role of the endometrium during embryo implantation. Hum Reprod. 2000;15(suppl 6):39–50.

    PubMed  Google Scholar 

  54. Lessey BA, Castelbaum AJ. Integrins and implantation in the human. Rev Endocr Metab Disord. 2002;3(2): 107–117.

    CAS  PubMed  Google Scholar 

  55. Reis FM, D’Antona D, Petraglia F. Predictive value of hormone measurements in maternal and fetal complications of pregnancy. Endocr Rev. 2002;23(2):230–257.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aixia Liu or Yimin Zhu PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., You, J., Wang, W. et al. Impact of Galectin-I on Trophoblast Stem Cell Differentiation and Invasion in In Vitro Implantation Model. Reprod. Sci. 25, 700–711 (2018). https://doi.org/10.1177/1933719117725816

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725816

Keywords

Navigation