Skip to main content

Advertisement

Log in

Effects of Folic Acid on DNMTI, GAP43, and VEGFRI in Intrauterine Growth Restriction Filial Rats

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of a folic acid intervention on the outcome of intrauterine growth restriction (IUGR) filial rats and changes in DNA methyltransferase 1 (DNMT1), growth-associated protein 43 (GAP43), and vascular endothelial growth factor receptor 1 (VEGFR1).

Methods

The IUGR animal model was established using a starvation method in pregnant rats. The animals were randomly divided into 4 groups: normal controls, IUGR rats, IUGR rats given folic acid, and IUGR rats given normal saline. After the rats were weighed, the brain tissue was removed and the messenger RNA and protein levels of DNMT1, GAP43, and VEGFR1 were validated by reverse transcription-polymerase chain reaction and western blot.

Results

Birth weight was significantly increased after intervention with folic acid compared with the IUGR group, although it remained about 16% lower compared with the normal controls. The expressions of DNMT1 and GAP43, which were significantly upregulated in the IUGR group compared with the normal controls, were decreased with the folic acid intervention. However, there were no significant differences in VEGFR1 expression across groups.

Conclusion

Brain damage in IUGR rats mainly manifests as delayed myeli- nation or synaptic maturation and rarely as pathological proliferation of blood vessels. Our results strongly support the idea that the application of folic acid during pregnancy might represent a new epigenetic therapy for IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. doi:10.4137/CMPed.S40070.

    PubMed  PubMed Central  Google Scholar 

  2. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental out-come. J Physiol. 2016;594(4):807–823. doi:10.1113/JP271402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carolan-Olah M, Duarte-Gardea M, Lechuga J. A critical review: early life nutrition and prenatal programming for adult disease. J Clin Nur. 2015;24(23-24):3716–3729. doi:10.1111/jocn.12951.

    Article  Google Scholar 

  4. Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav. 2016;164(pt A):233–248. doi:10.1016/j.physbeh.2016.06.005.

    Article  CAS  PubMed  Google Scholar 

  5. Roifman M, Choufani S, Turinsky AL, et al. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin Epigenetics. 2016;8:70. doi:10.1186/s13148-016-0238-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hillman SL, Finer S, Smart MC, et al. Novel DNA methylation profiles associated with key gene regulation and transcription pathways in blood and placenta of growth-restricted neonates. Epigenetics. 2015;10(1):50–61. doi:10.4161/15592294.2014.989741.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barker DJ. Adult consequences of fetal growth restriction. Clinical Obstet Gynecol. 2006;49(2):270–283.

    Article  Google Scholar 

  8. Meher S, Hernandez-Andrade E, Basheer SN, Lees C. Impact of cerebral redistribution on neurodevelopmental outcome in small-for-gestational-age or growth-restricted babies: a systematic review. Ultrasound Obstet Gynecol. 2015;46(4):398–404. doi: 10.1002/uog.14818.

    Article  CAS  PubMed  Google Scholar 

  9. Vuorela P, Halmesmaki E. Vascular endothelial growth factor, its receptors, and the tie receptors in the placental bed of women with preeclampsia, diabetes, and intrauterine growth retardation. Am J Perinatol. 2006;23(4):255–263. doi:10.1055/s-2006-939562.

    Article  PubMed  Google Scholar 

  10. Xu D, Wu Y, Liu F, et al. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion. Toxicol Appl Pharmacol. 2012;264(3):395–403. doi:10.1016/j.taap.2012.08.016.

    Article  CAS  PubMed  Google Scholar 

  11. Carson R, Monaghan-Nichols AP, DeFranco DB, Rudine AC. Effects of antenatal glucocorticoids on the developing brain. Steroids. 2016;114:25–32. doi:10.1016/j.steroids.2016.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ding YX, Shi Y, Han WJ, Cui H. Regulation of glucocorticoid-related genes and receptors/regulatory enzyme expression in intrauterine growth restriction filial rats. Life Sci. 2016;150: 61–66. doi:10.1016/j.lfs.2016.02.079.

    Article  CAS  PubMed  Google Scholar 

  13. Qian YY, Huang XL, Liang H, et al. Effects of maternal folic acid supplementation on gene methylation and being small for gestational age. J Hum Nutr Diet. 2016;29(5):643–51. doi:10.1111/jhn.12369.

    Article  PubMed  Google Scholar 

  14. Hamidi T, Singh AK, Chen T. Genetic alterations ofDNA methylation machinery in human diseases. Epigenomics. 2015;7(2): 247–65. doi:10.2217/epi.14.80.

    Article  CAS  PubMed  Google Scholar 

  15. Sarabi MM, Naghibalhossaini F. Association of DNA methyl-transferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem Funct. 2015;33(7):427–33. doi:10.1002/cbf.3126.

    Article  CAS  PubMed  Google Scholar 

  16. Allegra Mascaro AL, Cesare P, Sacconi L, et al. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci USA. 2013;110(26):10824–10829. doi:10.1073/pnas.1219256110.

    Article  PubMed  Google Scholar 

  17. Gauthier-Kemper A, Igaev M, Sundermann F, et al. Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43. Mol Biol Cell. 2014;25(21):3284–3299. doi:10.1091/mbc.E13-12-0737.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang CY, Lin HC, Song YP, et al. Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses. Mol Cell Biol. 2015;35(10):1712–1726. doi:10.1128/MCB.01332-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bird CW, Gardiner AS, Bolognani F, et al. KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PloS One. 2013;8(11):e79255. doi:10.1371/journal.pone.0079255.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Surmon L, Bobek G, Chiu CL, et al. The expression of placental soluble fms-like tyrosine kinase 1 in mouse placenta varies significantly across different litters from normal pregnant mice. Hypertens Pregnancy. 2014;33(3):371–374. doi:10.3109/10641955.2014.903963.

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Zhou XL, Dang YY, et al. Basal Flt1 tyrosine kinase activity is a positive regulator of endothelial survival and vascularization during zebrafish embryogenesis. Biochim Biophys Acta. 2015;1850(2):373–384. doi:10.1016/j.bbagen.2014.10.023.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cui MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Yx., Cui, H. Effects of Folic Acid on DNMTI, GAP43, and VEGFRI in Intrauterine Growth Restriction Filial Rats. Reprod. Sci. 25, 366–371 (2018). https://doi.org/10.1177/1933719117715128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117715128

Keywords

Navigation