Skip to main content

Advertisement

Log in

The Effect of Erythropoietin in Preventing Ischemia-Reperfusion Injury in Ovarian Tissue Transplantation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Ovarian tissue cryopreservation and transplantation are the only options accepted for prepubertal girls and women requiring immediate chemotherapy. Ischemia–reperfusion injury is the main obstacle for ovarian tissue transplantation. In the present study, we aimed to evaluate the effects of recombinant human erythropoietin (EPO) on tissue viability in autotransplanted rat ovaries.

Study Design

Seventeen female rats were randomized into 3 groups as sham control group (n = 5), EPO-treated group (n = 6), and EPO-untreated group (n = 6). Both ovaries were excised and transplanted into a subcutaneous pouch formed at the anterior abdominal wall in the EPO-treated and untreated groups. In the EPO group, 5000 U/kg EPO was applied as local injection to the site that ovarian tissue was placed and the dose was repeated with the same route at the end of the fourth week. After 2 months, ovaries were removed and blood samples were obtained. Levels of estradiol (E2), vascular endothelial growth factor (VEGF), VEGF-C, and lipid hydroperoxidase (LPO) and the activity of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) were measured both in blood and tissue samples. Histopathological and morphometric analyses were also performed on tissue samples.

Results

Considering serum levels, mean CAT was significantly higher (P =.003) and mean SOD (P =.033), LPO (P =.050), VEGF (P =.001), and VEGF-C (P =.024) were significantly lower in the EPO-treated group than in the untreated group. Mean serum GPX levels were similar. Significantly higher levels of E2 were determined in the EPO group than in the untreated group. Highest serum E2 levels were found in the sham group (P =.001). Tissue levels of GPX (1.23) and CAT (53.17) were significantly higher in the EPO group (P =.002 and P =.001, respectively). However, tissue levels of SOD and LPO, VEGF, and VEGF-C levels were significantly lower in the EPO group than those in the untreated group (P =.033, P =.050, P =.002, and P =.003, respectively). In tissue examination, the highest values of x, y axis and epithelial height were in the sham group. Mean value of the EPO group was found statistically significantly higher than that of the untreated group (P ≤.05). In terms of antral follicle count, ordering was found as sham > EPO-treated > EPO-untreated group. Follicle counts in the EPO group were significantly higher than those in the untreated group (P ≤ 0.05).

Conclusion

Erythropoietin improved the survival of follicles in ovarian grafts most likely by reducing ischemic injury, by improving neoangiogenesis, and by its antioxidant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blatt J. Pregnancy outcome in long-term survivors of childhood cancer. Med Pediatr Oncol. 1999;33(1):29–33. doi:10.1002/(SICI)1096-911X199907)33:13.0.CO;2-2

    CAS  PubMed  Google Scholar 

  2. Donnez J, Matinez-Madrid B, Jadoul P, et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update. 2006;12(5):519–535. doi:10.1093/humupd/dml032

    PubMed  Google Scholar 

  3. Donnez J, Bassil S. Indications for cryopreservation of ovarian tissue. Hum Reprod Update. 1998;4(3):248–259. doi:10.1093/humupd/4.3.248

    CAS  PubMed  Google Scholar 

  4. Meirow D, Ben Yehuda D, Pius D, et al. Ovarian tissue banking in patients with Hodgkin’s disease: is safe? Fertil Steril. 1998;69(6): 996–998. doi:10.1016/S0015-0282(98)00093-4

    CAS  PubMed  Google Scholar 

  5. Oktay K, Newton H, Aubard Y, Salha O, Gosden RG. Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology? Fertil Steril. 1998;69(1):1–7. doi:10.1016/S0015-0282(97)00207-0

    CAS  PubMed  Google Scholar 

  6. Donnez J, Godin PA, Qu J, Nisolle M. Gonadal cryopreservation in young patient with gynaecological malignancy. Curr Opin Obstet Gynecol. 2000;12(1):1–9. doi:10.1097/00001703-200002000-00001

    CAS  PubMed  Google Scholar 

  7. Donnez J, Dolmans MM, Matinez-Madrid B, Demylle D, Van Langendonckt A. The role of cryopreservation for women prior to treatment of malignancy. Curr Opin Obstet Gynecol. 2005;17(4):333–338. doi:10.1097/01.gco.0000175348.72566.47

    PubMed  Google Scholar 

  8. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009;15(6):649–665. doi:10.1093/humupd/dmp021

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hemadi M, Abolhassani F, Akbari M, et al. Melatonin promotes the cumulus-oocyte complexes quality of vitrified-thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation. Eur J Pharmacol. 2009;618(1-3):84–90. doi:10.1016/j.ejphar.2009.07.018

    CAS  PubMed  Google Scholar 

  10. Karaca M, Odabasoglu F, Kumtepe Y, Albayrak A, Cadirci E, Keles ON. Protective effects of erythropoietin on ischemia/reperfusion injury of rat ovary. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):157–162. doi:10.1016/j.ejogrb.2009.03.011

    CAS  PubMed  Google Scholar 

  11. Aubard Y, Piver P, Cognie Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 1999;14(8):2149–2154. doi:10.1093/humrep/14.8.2149

    CAS  PubMed  Google Scholar 

  12. Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at —196°C. Endocrinology. 1999;140(1):462–471. doi:10.1210/en.140.1.462

    CAS  Google Scholar 

  13. Oktay K, Newton H, Gosden RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil Steril. 2000;73(3):599–603. doi:10.1016/S0015-0282(99)00548-8

    CAS  PubMed  Google Scholar 

  14. Liu J, Van den Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605–611. doi:10.1093/humrep/17.3.605

    PubMed  Google Scholar 

  15. Israely T, Dafni H, Granot D, Nevo N, Tsafriri A, Neeman M. Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts. Biol Reprod. 2003;68(6): 2055–2064. doi:10.1095/biolreprod.102.011734

    CAS  PubMed  Google Scholar 

  16. Mehranjani MS, Noorafshan A, Hamta A, et al. Effects of vitamin E on ovarian tissue of rats following treatment with p-nonylphenol: a stereological study. Iranian J Reprod Med. 2010:8(1):81–89.

    Google Scholar 

  17. Sayyah-Melli M, Kazemi-Shishvan M, Solaimani-Rad J, et al. The ovario-protective effect of erythropoietin against oxidative damage associated with reperfusion following ovarian torsion in rat. Am J Anim Vet Sci. 2011;6(1):18–24. doi:10.3844/ajavsp.2011.18.24

    Google Scholar 

  18. Commin L, Buff S, Rosset E, et al. Follicle development in cryo-preserved bitch ovarian tissue grafted to immunodeficient mouse. Reprod Fertil Dev. 2012;24(3):461–471. doi:10.1071/RD11166

    CAS  PubMed  Google Scholar 

  19. Wang Y, Chang Q, Sun J, et al. Effects of HMG on revascularization and follicular survival in heterotopic autotransplants of mouse ovarian tissue. Reprod Biomed Online. 2012;24(6):646–653. doi:10.1016/j.rbmo.2012.02.025

    PubMed  Google Scholar 

  20. Suzuki H, Ishijima T, Maruyama S, Yanagimoto Ueta Y, Abe Y, Saitoh H. Beneficial effect of desialylated erythropoietin administration on the frozen-thawed canine ovarian xenotransplantation. J Assist Reprod Genet. 2008;25(11-12):571–575. doi:10.1007/s10815-008-9271-9

    PubMed  PubMed Central  Google Scholar 

  21. Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(suppl 4):1550–1558. doi:10.1016/j.fertnstert.2007.08.086

    CAS  PubMed  Google Scholar 

  22. Bakan V, Ciralik H, Tolun FI, Atli Y, Mil A, Ozturk S. Protective effect of erythropoietin on torsion/detorsion injury in rat model. J Pediatr Surg. 2009;44(10):1988–1994. doi:10.1016/j.jpedsurg.2009.02.071

    PubMed  Google Scholar 

  23. Kolusari A, Kamaci M, Zeteroglu S, Altunay H, Sahin HG. Protective effects of erythropoietin on ischemia-reperfusion model in rat ovary. Turkye Klinikleri J Med Sci. 2010;30(4):1189–1195. doi:10.5336/medsci.2009-13553

    Google Scholar 

  24. Lowry O, Rsenbraugh N, Farr L, Randall R. Protein measurement with the Folin-phenol reagent. J Biol Chem. 1951;193(1):265–275.

    CAS  Google Scholar 

  25. Ishijima T, Kobayashi Y, Lee DS, et al. Cryopreservation of canine ovaries by vitrification. J Reprod Dev. 2006;52(2): 293–299. doi:10.1262/jrd.17080

    CAS  PubMed  Google Scholar 

  26. Martinez-Madrid B, Dolmans MM, Van Langendonckt A, Defrere S, Donnez J. Freezing-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82(5):1390–1394. doi:10.1016/j.fertnstert.2004.06.036

    PubMed  Google Scholar 

  27. Maltaris T, Beckmann MW, Binder H, et al. The effect of a GnRH agonist on cryopreserved human ovarian graft in severe combined immunodeficient mice. Reproduction. 2007;133(2):503–509. doi:10.1530/REP-06-0061

    CAS  PubMed  Google Scholar 

  28. Maltaris T, Dimmler A, Muller A, et al. The use of an openfreezing system with self-seeding for cryopreservation of mouse ovarian tissue. Reprod Domest Anim. 2005;40(3):250–254. doi:10. 1111/j.1439-0531.2005.00595.x

    CAS  PubMed  Google Scholar 

  29. Suzuki H, Ishijima T, Maruyama S, Ueta YY, Abe Y, Saitoh H. Beneficial effects of desialylated erythropoietin administration on the frozen-thawed canine ovarian xenotransplantation. J Assist Reprod Genet. 2008;25:571–575. doi:10.1007/s10815-008-9271-9

    PubMed  PubMed Central  Google Scholar 

  30. Mahmoodi M, Mehranjani MS, Shariatzadeh SMA, Eimani H, Shahverdi A. Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts. Reproduction. 2014;147(5):733–741.

    CAS  PubMed  Google Scholar 

  31. Clarijs R, Schalkwijk L, Ruiter DJ, de Waal RM. Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42(7):1422–1428.

    CAS  PubMed  Google Scholar 

  32. Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 1996;122(12):3829–3837.

    CAS  PubMed  Google Scholar 

  33. Muders M, Zhang H, Wang E, Tindall DJ, Datta K. Vascular Endothelial Growth Factor-C protects prostate cancer cells from oxidative stress by the activation of mTORC-2 and AKT-1. Cancer Res. 2009;69(15): 6042–6048.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7(2):192–198.

    CAS  PubMed  Google Scholar 

  35. Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer. 2002;98(6):946–951.

    CAS  PubMed  Google Scholar 

  36. Cohen B, Addadi Y, Sapoznik S, et al. Transcriptional regulation of vascular endothelial growth factor C by oxidative and thermal stress is mediated by lens epithelium-derived growth factor/p75. Neoplasia. 2009;11(9):921–931.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayše Güer Okyay MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolusari, A., Okyay, A.G. & Koçkaya, E.A. The Effect of Erythropoietin in Preventing Ischemia-Reperfusion Injury in Ovarian Tissue Transplantation. Reprod. Sci. 25, 406–413 (2018). https://doi.org/10.1177/1933719117715127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117715127

Keywords

Navigation