Skip to main content
Log in

Administration of Progesterone Throughout Pregnancy Increases Maternal Steroids Without Adverse Effect on Mature Oligodendrocyte Immunostaining in the Guinea Pig

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Progesterone is administered to pregnant women at risk of premature labor, despite systematic reviews showing conflicting outcomes regarding its use, highlighting doubt over the effectiveness of the therapy. Progesterone can be rapidly metabolized into a number of steroids, but to date, there has been a lack of investigation into the fetal steroid profiles following administration and whether this impacts fetal neurodevelopment. The objective of this study was to determine the effect of progesterone treatment on allopregnanolone and cortisol levels in the fetus and on a marker of myelination in the fetal brain. We used a guinea pig model where pregnant dams were administered vehicle (β-cyclodextrin) or progesterone orally throughout pregnancy (GA29-61). Maternal and fetal fluids and tissues were collected at both preterm (GA61) and term (GA68) ages. Maternal and fetal progesterone and cortisol were analyzed by enzyme immunoassay and allopregnanolone by radioimmunoassay. Measurement of myelination of fetal brains (hippocampus, cingulum, and subcortical white matter) at preterm and term ages was performed by immunohistochemistry staining for myelin basic protein. We found that dams receiving progesterone had significantly elevated progesterone and cortisol concentrations, but there was no effect on allopregnanolone. Interestingly, the increased cortisol concentrations were not reflected in the fetuses, and there was no effect of progesterone treatment on myelination. Therefore, we conclude that in our guinea pig model, maternal administration of progesterone has no effect on cortisol levels or markers of mature oligodendrocytes in the fetus and suggest this is potentially due to the protective cortisol barrier in the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832): 2162–2172.

    Google Scholar 

  2. Saccone G, Suhag A, Berghella V. 17-Alpha-hydroxyprogesterone caproate for maintenance tocolysis: a systematic review and metaanalysis of randomized trials. Am J Obstet Gynecol. 2015;213(1): 16–22.

    CAS  PubMed  Google Scholar 

  3. Suhag A, Saccone G, Berghella V. Vaginal progesterone for maintenance tocolysis: a systematic review and metaanalysis of randomized trials. Am J Obstet Gynecol. 2015;213(4):479–487.

    CAS  PubMed  Google Scholar 

  4. Smith V, Devane D, Begley CM, Clarke M, Higgins S. A systematic review and quality assessment of systematic reviews of randomised trials of interventions for preventing and treating preterm birth. Eur J Obstet Gynecol Reprod Biol. 2009;142(1):3–11.

    PubMed  Google Scholar 

  5. Bafghi AS, Bahrami E, Sekhavat L. Comparative study of vaginal versus intramuscular progesterone in the prevention of preterm delivery: a randomized clinical trial. Electron Physician. 2015;7(6):1301–1309.

    PubMed  PubMed Central  Google Scholar 

  6. Chmaj-Wierzchowska K, Olejniczak T, Tuzel J, et al. Threatened preterm labour - analysis of the cytokine profile and progesterone treatment efficiency. JMatern Fetal Neonatal Med. 2017;30(7): 814–817.

    CAS  Google Scholar 

  7. Dodd JM, Crowther CA, Cincotta R, Flenady V, Robinson JS. Progesterone supplementation for preventing preterm birth: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2005;84(6):526–533.

    PubMed  Google Scholar 

  8. Mackenzie R, Walker M, Armson A, Hannah ME. Progesterone for the prevention of preterm birth among women at increased risk: a systematic review and meta-analysis of randomized controlled trials. Am J Obstet Gynecol. 2006;194(5):1234–1242.

    CAS  PubMed  Google Scholar 

  9. Dodd JM, Jones L, Flenady V, Cincotta R, Crowther CA. Prenatal administration of progesterone for preventing preterm birth in women considered to be at risk of preterm birth. Cochrane Data-base SystRev. 2013;(7):CD004947.

  10. de Oliveira LA, Brizot ML, Liao AW, Bittar RE, Francisco RP, Zugaib M. Prenatal administration of vaginal progesterone and frequency of uterine contractions in asymptomatic twin pregnancies. Acta Obstet Gynecol Scand. 2016;95(4):436–443.

    PubMed  Google Scholar 

  11. Briery CM, Klauser CK, Martin RW, Magann EF, Chauhan SP, Morrison JC. The use of 17-hydroxy progesterone in women with arrested preterm labor: a randomized clinical trial. J Matern Fetal Neonatal Med. 2014;27(18):1892–1896.

    CAS  PubMed  Google Scholar 

  12. Norman JE, Marlow N, Messow CM, et al. Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, randomised, double-blind trial. Lancet. 2016;387(10033): 2106–2116.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rode L, Klein K, Nicolaides KH, Krampl-Bettelheim E, Tabor A; PREDICT Group. Prevention of Preterm Delivery in Twin Gestations (PREDICT): a multicenter, randomized, placebo-controlled trial on the effect of vaginal micronized progesterone. Ultrasound Obstet Gynecol. 2011;38(3):272–280.

    CAS  PubMed  Google Scholar 

  14. Baron-Cohen S, Auyeung B, Norgaard-Pedersen B, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015;20(3):369–376.

    CAS  PubMed  Google Scholar 

  15. Pasqualini JR. Enzymes involved in the formation and transformation of steroid hormones in the fetal and placental compartments. J Steroid Biochem Mol Biol. 2005;97(5):401–415.

    CAS  PubMed  Google Scholar 

  16. Bennett GA, Palliser HK, Saxby B, Walker DW, Hirst JJ. Effects of prenatal stress on fetal neurodevelopment and responses to maternal neurosteroid treatment in guinea pigs. Dev Neurosci. 2013;35(5):416–426.

    CAS  PubMed  Google Scholar 

  17. Hirst JJ, Palliser HK, Yates DM, Yawno T, Walker DW. Neurosteroids in the fetus and neonate: potential protective role in compromised pregnancies. Neurochem Int. 2008;52(4-5):602–610.

    CAS  PubMed  Google Scholar 

  18. Seamark R, Nancarrow CD, Gardiner J. Progesterone metabolism in ovine blood: the formation of 3a-hydroxy-pregn-4-en-20-one and other substances. Steroids. 1970;15(4):589–604.

    CAS  PubMed  Google Scholar 

  19. Herd MB, Belelli D, Lambert JJ. Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther. 2007;116(1):20–34.

    CAS  PubMed  Google Scholar 

  20. Bičıková M, Klak J, Hill M, Žižka Z, Hampl R, Calda P. Two neuroactive steroids in midpregnancy as measured in maternal and fetal sera and in amniotic fluid. Steroids. 2002;67(5): 399–402.

    PubMed  Google Scholar 

  21. Chesik D, De Keyser J. Progesterone and dexamethasone differentially regulate the IGF-system in glial cells. Neurosci Lett. 2010;468(3):178–182.

    CAS  PubMed  Google Scholar 

  22. Ghoumari AM, Ibanez C, El-Etr M, et al. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem. 2003;86(4): 848–859.

    CAS  PubMed  Google Scholar 

  23. Schumacher M, Guennoun R, Robert F, et al. Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm IGF Res. 2004;14(suppl A): S18–S33.

    CAS  PubMed  Google Scholar 

  24. Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49(4):391–402, e1-e2.

    PubMed  Google Scholar 

  25. Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12(2):R61.

    PubMed  PubMed Central  Google Scholar 

  26. Hemauer SJ, Yan R, Patrikeeva SL, et al. Transplacental transfer and metabolism of 17-alpha-hydroxyprogesterone caproate. Am J Obstet Gynecol. 2008;199(2):169 e1-e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Caritis SN, Simhan HN, Zhao Y, et al. Relationship between 17-hydroxyprogesterone caproate concentrations and gestational age at delivery in twin gestation. Am J Obstet Gynecol. 2012;207(5): 396 e1-e8.

    PubMed  PubMed Central  Google Scholar 

  28. Wagner CK, Quadros-Mennella P. Progesterone from maternal circulation binds to progestin receptors in fetal brain. Dev Neurobiol. 2017;77(6):767–774.

    CAS  PubMed  Google Scholar 

  29. Palliser HK, Kelleher MA, Tolcos M, Walker DW, Hirst JJ. Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs. J Dev Orig Health Dis. 2015;6(4):350–361.

    CAS  PubMed  Google Scholar 

  30. Willing J, Wagner CK. Exposure to the synthetic progestin, 17alpha-hydroxyprogesterone caproate during development impairs cognitive flexibility in adulthood. Endocrinology. 2016;157(1):77–82.

    CAS  PubMed  Google Scholar 

  31. Norman TR, Morse CA, Dennerstein L. Comparative bioavailability of orally and vaginally administered progesterone. Fertil Steril. 1991;56(6):1034–1039.

    CAS  PubMed  Google Scholar 

  32. Shaw JC, Palliser HK, Dyson RM, Hirst JJ, Berry MJ. Long-term effects of preterm birth on behavior and neurosteroid sensitivity in the guinea pig. Pediatr Res. 2016;80(2):275–283.

    CAS  PubMed  Google Scholar 

  33. McKendry AA, Palliser HK, Yates DM, Walker DW, Hirst JJ. The effect of betamethasone treatment on neuroactive steroid synthesis in a foetal guinea pig model of growth restriction. J Neuroendocrinol. 2010;22(3):166–174.

    CAS  PubMed  Google Scholar 

  34. Bennett GA, Palliser HK, Walker D, Hirst J. Severity and timing: how prenatal stress exposure affects glial developmental, emotional behavioural and plasma neurosteroid responses in guinea pig offspring. Psychoneuroendocrinology. 2016;70:47–57.

    CAS  PubMed  Google Scholar 

  35. Kelleher MA, Palliser HK, Walker DW, Hirst JJ. Sex-dependent effect of a low neurosteroid environment and intrauterine growth restriction on foetal guinea pig brain development. J Endocrinol. 2011;208(3):301–309.

    CAS  PubMed  Google Scholar 

  36. Shaw JC, Palliser HK, Walker DW, Hirst JJ. Preterm birth affects GABAA receptor subunit mRNA levels during the foetal-to-neonatal transition in guinea pigs. J Dev Orig Health Dis. 2015;6(3):250–260.

    CAS  PubMed  Google Scholar 

  37. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’of adult patho-physiology. Nat Clin Pract Endocrinol Metab. 2007;3(6):479–488.

    CAS  PubMed  Google Scholar 

  38. Bennett GA, Palliser HK, Shaw JC, Walker D, Hirst JJ. Prenatal stress alters hippocampal neuroglia and increases anxiety in child-hood. Dev Neurosci. 2015;37(6):533–545.

    CAS  PubMed  Google Scholar 

  39. Byrns MC. Role of aldo-keto reductase enzymes in mediating the timing of parturition. Front Pharmacol. 2012;2:92.

    PubMed  PubMed Central  Google Scholar 

  40. Jin Y, Mesaros AC, Blair IA, Penning TM. Stereospecific reduction of 5beta-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5beta-reductase pathway. Biochem J. 2011;437(1):53–61.

    CAS  PubMed  Google Scholar 

  41. Penning TM, Burczynski ME, Jez JM, et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J. 2000;351(pt1):67–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Diaz-Zagoya JC, Wiest WG, Arias F. 20 Alpha-hydroxysteroid oxidoreductase activity and 20 alpha-dihydroprogesterone concentration in human placenta before and after parturition. Am J Obstet Gynecol. 1979;133(6):673–676.

    CAS  PubMed  Google Scholar 

  43. Milewich L, Gant NF, Schwarz BE, Chen GT, Macdonald PC. Initiation of human parturition. IX. Progesterone metabolism by placentas of early and late human gestation. Obstet Gynecol. 1978;51(3):278–280.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia C. Shaw BBiomedSc (Hons).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, J.C., Palliser, H.K., Palazzi, K. et al. Administration of Progesterone Throughout Pregnancy Increases Maternal Steroids Without Adverse Effect on Mature Oligodendrocyte Immunostaining in the Guinea Pig. Reprod. Sci. 25, 395–405 (2018). https://doi.org/10.1177/1933719117715125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117715125

Keywords

Navigation