Skip to main content
Log in

Effect of Lactobacillus rhamnosus GR-I Supernatant on Cytokine and Chemokine Output From Human Amnion Cells Treated With Lipoteichoic Acid and Lipopolysaccharide

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preterm birth occurs in 9% to 13% of all human pregnancies and accounts for 80% of all neonatal morbidities and mortalities. Approximately 40% of all preterm births are idiopathic and about half are associated with infection and/or an activated inflammatory process. Further to studies showing anti-inflammatory effects of supernatant from the probiotic Lactobacillus rhamnosus GR-I (GR-I), we tested its ability to modulate cytokine and chemokine production from amnion cells in response to stimulation by bacterial wall components, lipopolysaccharide (LPS), and lipoteichoic acid (LTA). Placentae were collected from women undergoing elective cesarean section at term. Amnion cells were cultured for 48 hours to confluence, serum starved for 12 hours, and then treated with GR-I supernatant (1:20 dilution), followed after 12 hours by LPS (100 ng/mL) or LTA (10 ng/mL) for an additional 12 hours. Both LTA and LPS caused significant increases in the concentration of the pro-inflammatory cytokine, tumor necrosis factor a (TNF-α; 103.9 ± 67.5 pg/mL and 368.3 ± 65.7 pg/mL, respectively) in medium from cultured amnion cells compared to control (<4 pg/mL). There was no significant effect of GR-I supernatant alone on TNF-α output, but there was significant reduction after LPS treatment. The basal output of the immunomodulatory cytokine, interleukin 6, was 613 ± 170 pg/ mL and increased significantly after addition of GR-1 supernatant, LTA, LPS, and combinations of LTA/LPS with GR-1 supernatant. In conclusion, probiotic L rhamnosus GR-I attenuates the effect of both LPS and LTA in stimulating the output of the proinflammatory cytokine TNF-a from mixed cultures of human amnion cells in keeping with previous findings in human trophoblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldenberg RL, Culhane JF, Lams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hillier SL, Nugent RP, Eschenbach DA, et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The vaginal infections and prematurity study group. N Engl J Med. 1995;333(26):1737–1742.

    Article  CAS  PubMed  Google Scholar 

  3. Andrews WW, Hauth JC, Goldenberg RL, Gomez R, Romero R, Cassell GH. Amniotic fluid interleukin-6: correlation with upper genital tract microbial colonization and gestational age in women delivered after spontaneous labor versus indicated delivery. Am J Obstet Gynecol. 1994;173(2):606–612.

    Article  Google Scholar 

  4. Coultrip LL, Lien JM, Gomez R, Kapernick P, Khoury A, Grossman JH. The value of amniotic fluid interleukin-6 determination in patients with PTL and intact membranes in the detection of microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 1994;171(4):901–911.

    Article  CAS  PubMed  Google Scholar 

  5. Esplin MS, Romero R, Chaiworapongsa T, et al. Monocyte che-motactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. J Matern Fetal Neonatal Med. 2005;17(6):365–373.

    Article  CAS  PubMed  Google Scholar 

  6. Hillier SL, Krohn MA, Rabe LK, Klebanoff SJ, Eschenbach DA. The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women. Clin Infect Dis. 1993;16(suppl 4):S273–S281.

    Article  PubMed  Google Scholar 

  7. Romero R, Brody DT, Oyarzun E, et al. Infection and labor. III. interleukin-1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989;160(5 pt 1):1117–1123.

    Article  CAS  PubMed  Google Scholar 

  8. Andrews WW, Sibai BM, Thorn EA, et al. Randomized clinical trial of metronidazole plus erythromycin to prevent spontaneous preterm delivery in fetal fibronectin positive women. Obstet Gynecol. 2003;101(5 pt 1):847–855.

    Article  CAS  PubMed  Google Scholar 

  9. Okun N, Gronau KA, Hannah ME. Antibiotics for bacterial vaginosis or Trichomonas vaginalis in pregnancy: a systematic review. Obstet Gynecol. 2005;105(4):857–868.

    Article  CAS  PubMed  Google Scholar 

  10. Reid G. The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol. 1999;65(9):3763–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Antonio MA, Hawes SE, Hillier SL. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis. 1999;180(6):1950–1956.

    Article  CAS  PubMed  Google Scholar 

  12. Burton JP, Reid G. Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques. J Infect Dis. 2002;186(12):1770–1780.

    Article  CAS  PubMed  Google Scholar 

  13. Forsum U, Hoist E, Larsson PG, Vasquez A, Jakobsson T, Mattsby-Baltzer I. Bacterial vaginosis—a microbiological and immunological enigma. APMIS. 2005;113(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  14. Lamont R, Sobel J, Akins R, et al. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG. 2011;118(5):533–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pavlova SI, Kilic AO, Kilic SS, et al. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol. 2002;92(3):451–459.

    Article  CAS  PubMed  Google Scholar 

  16. Vasquez A, Jakobsson T, Ahrne S, Forsum U, Molin G. Vaginal Lactobacillus flora of healthy Swedish women. J Clin Microbiol. 2002;40(8):2746–2749.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamamoto T, Zhou X, Williams CJ, Hochwalt A, Forney LJ. Bacterial populations in the vaginas of healthy adolescent women. J Pediatr Adolesc Gynecol. 2009;22(1):11–18.

    Article  PubMed  Google Scholar 

  18. Reid G, Millsap K, Bruce AW. Implantation of Lactobacillus casei var rhamnosus into vagina. Lancet. 1994;344(8931):1229.

    Article  CAS  PubMed  Google Scholar 

  19. Reid G, Charbonneau D, Erb J, et al. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol Med Microbiol. 2003;35(2):131–134.

    Article  CAS  PubMed  Google Scholar 

  20. Yeganegi M, Leung CG, Martins A, et al. Lactobacillus rhamnosus GR-1-induced IL-10 production in human placental tropho-blast cells involves activation of JAK/STAT and MAPK pathways. Reprod Sci. 2010;17(11):1043–1051.

    Article  CAS  PubMed  Google Scholar 

  21. Yeganegi M, Leung CG, Martins A, et al. Lactobacillus rhamnosus GR-1 stimulates colony-stimulating factor 3 (granulocyte) (CSF3) output in placental trophoblast cells in a fetal sex-dependent manner. Biol Reprod. 2011;84(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Li W, Challis JR, Reid G, Kim SO, Bocking AD. Probiotic Lactobacillus rhamnosus GR-1 supernatant prevents lipopolysaccharide-induced preterm birth and reduces inflammation in pregnant CD-1 mice. Am J Obstet Gynecol. 2014:211(1):44.e1–44.e12.

    Article  CAS  Google Scholar 

  23. Whittle WL, Gibb W, Challis JRG. The characterization of human amnion epithelial and mesenchymal cell culture; the cellular expression, activity and glucocorticoid regulation of prostaglandin synthesis. Placenta. 2000;21(4):394–401.

    Article  CAS  PubMed  Google Scholar 

  24. Bloise E, Torricelli M, Novembri R, et al. Heat-killed Lactobacillus rhamnosus GG modulates urocortin and cytokine release in primary trophoblast cells. Placenta. 2010;31(10):867–872.

    Article  CAS  PubMed  Google Scholar 

  25. Thiex NW, Chames MC. Loch-Caruso RK. Tissue-specific cytokine release from human extra-placental membranes stimulated by lipopolysaccharide in a two-compartment tissue culture system. Reprod Biol Endocrinol. 2009;7:117–127.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zaga V, Estrada-Gutierrez G, Beltran-Montoya J, Maida-Claros R, Lopez-Vancell R, Vadillo-Ortega F. Secretions of interleukin-lbeta and tumor necrosis factor alpha by whole fetal membranes depend on initial interactions of amnion or choriodecidua with lipopolysaccharides or group B streptococci. Biol Reprod. 2004;71(4):1296–1302.

    Article  CAS  PubMed  Google Scholar 

  27. Blumenstein M, Hansen WR, Deval D, Mitchell MD. Differential regulation in human amnion epithelial and fibroblast cells of prostaglandin E(2) production and prostaglandin H synthase-2 mRNA expression by dexamethasone but not tumour necrosis factor-alpha. Placenta. 2000;21(2-3):210–217.

    Article  CAS  PubMed  Google Scholar 

  28. Bry K, Hallman M. Transforming growth factor-beta opposes the stimulatory effects of interleukin-1 and tumor necrosis factor on amnion cell prostaglandin E2 production: implication for preterm labor. Am J Obstet Gynecol. 1992;167(1):222–226.

    Article  CAS  PubMed  Google Scholar 

  29. Pollard JK, Mitchell MD. Tumor necrosis factor alpha stimulates amnion prostaglandin biosynthesis primarily via an action on fatty acid cyclooxygenase. Prostaglandins. 1993;46(6):499–510.

    Article  CAS  PubMed  Google Scholar 

  30. Romero R, Durum S, Dinarello CA, Oyarzun E, Hobbins JC, Mitchell MD. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins. 1999;37(1):13–22.

    Article  Google Scholar 

  31. Aderka D, Le JM, Vilcek J. IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol. 1996;143(11):3517–3523.

    Google Scholar 

  32. Schindler R, Mantilla J, Endres S, Ghorbani R, Clark SC. Dinarello CA.Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75(1):40–47.

    Article  CAS  PubMed  Google Scholar 

  33. Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1995;83(1):113–118.

    Article  Google Scholar 

  34. Xing Z, Gauldie J, Cox G, et al. IL-6 is an anti-inflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Investig. 1998;101(2):311–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rinaldi SF, Hutchinson JL, Rossi AG, Norman JE. Antiinflammatory mediators as physiological and pharmacological regulators of parturition. Expert Rev Clin Immunol. 2011;7(5):675–698.

    Article  CAS  PubMed  Google Scholar 

  36. Mehta A, Brewington R, Chatterji M, et al. Infection-induced modulation of ml and m2 phenotypes in circulating monocytes: role in immune monitoring and early prognosis of sepsis. Shock. 2004;22(5):423–430.

    Article  CAS  PubMed  Google Scholar 

  37. Sierra-Filardi E, Puig-Kroger A, Blanco FJ, et al. Activin A skews macrophage polarization by promoting a pro-inflammatory phe-notype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood. 2011;117(19):5092–5101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Bocking MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koscik, R.J.E., Reid, G., Kim, S.O. et al. Effect of Lactobacillus rhamnosus GR-I Supernatant on Cytokine and Chemokine Output From Human Amnion Cells Treated With Lipoteichoic Acid and Lipopolysaccharide. Reprod. Sci. 25, 239–245 (2018). https://doi.org/10.1177/1933719117711259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117711259

Keywords

Navigation